提交 13d7b57a 编写于 作者: S sibo2rr

Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleClas into develop

# 图像分类任务数据集说明
# 图像识别任务数据集说明
本文档将介绍 PaddleClas 所使用的图像识别任务数据集格式,以及图像识别领域的常见数据集介绍。
......@@ -15,8 +15,8 @@
- [2.2.2 商品识别](#商品识别)
- [2.2.3 Logo识别](#Logo识别)
- [2.2.4 车辆识别](#车辆识别)
<a name="数据集格式说明"></a>
## 一、数据集格式说明
......
......@@ -29,11 +29,11 @@
| 模型 | 模型结构 | 预训练模型下载地址 | inference模型下载地址 | mAP | inference模型大小(MB) | 单张图片预测耗时(不包含预处理)(ms) |
| :------------: | :-------------: | :------: | :-------: | :--------: | :-------: | :--------: |
| 轻量级主体检测模型 | PicoDet | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_pretrained.pdparams) | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar) | 40.1% | 30.1 | 29.8 |
| 服务端主体检测模型 | PP-YOLOv2 | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/ppyolov2_r50vd_dcn_mainbody_v1.0_pretrained.pdparams) | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar) | 42.5% | 210.5 | 466.6 |
| 轻量级主体检测模型 | PicoDet | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_pretrained.pdparams) | [tar 格式文件地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar) [zip 格式文件地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.zip) | 40.1% | 30.1 | 29.8 |
| 服务端主体检测模型 | PP-YOLOv2 | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/ppyolov2_r50vd_dcn_mainbody_v1.0_pretrained.pdparams) | [tar 格式文件地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar) [zip 格式文件地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.zip) | 42.5% | 210.5 | 466.6 |
* 注意
* 由于部分解压缩软件在解压上述 `tar` 格式文件时存在问题,建议非命令行用户下载 `zip` 格式文件并解压。`tar` 格式文件建议使用命令 `tar xf xxx.tar` 解压。
* 速度评测机器的CPU具体信息为:`Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz`,速度指标为开启 mkldnn ,线程数设置为 10 测试得到。
* 主体检测的预处理过程较为耗时,平均每张图在上述机器上的时间在 40~55 ms 左右,没有包含在上述的预测耗时统计中。
......
......@@ -4,8 +4,8 @@
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)在移动端部署 PaddleClas 分类模型的详细步骤。识别模型的部署将在近期支持,敬请期待。
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。
<!-- TODO(gaotingquan): 下述 benchmark 文档在新文档结构中缺失 -->
<!-- 如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../../docs/zh_CN/extension/paddle_mobile_inference.md)。 -->
如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../others/paddle_mobile_inference.md)
---
......@@ -58,9 +58,7 @@ cd Paddle-Lite
git checkout develop
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
```
<!-- TODO(gaotingquan): 需要与lite同学确认,该编译选项是否需要更新:with_cv with_extra, -->
<!-- https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_options.html -->
<!-- **注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。 -->
**注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[Linux x86 环境下编译适用于 Android 的库](https://paddle-lite.readthedocs.io/zh/latest/source_compile/linux_x86_compile_android.html),关于其他平台的编译操作,具体请参考[PaddleLite](https://paddle-lite.readthedocs.io/zh/latest/)`源码编译`部分。
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
预测库的文件目录如下:
......
# Paddle-Lite
## 一、简介
[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 是飞桨推出的一套功能完善、易用性强且性能卓越的轻量化推理引擎。
轻量化体现在使用较少比特数用于表示神经网络的权重和激活,能够大大降低模型的体积,解决终端设备存储空间有限的问题,推理性能也整体优于其他框架。
[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) 使用 Paddle-Lite 进行了[移动端模型的性能评估](../models/Mobile.md),本部分以`ImageNet1k`数据集的`MobileNetV1`模型为例,介绍怎样使用`Paddle-Lite`,在移动端(基于骁龙855的安卓开发平台)对进行模型速度评估。
## 二、评估步骤
### 2.1 导出inference模型
* 首先需要将训练过程中保存的模型存储为用于预测部署的固化模型,可以使用`tools/export_model.py`导出inference模型,具体使用方法如下。
```shell
python tools/export_model.py \
-c ./ppcls/configs/ImageNet/MobileNetV1/MobileNetV1.yaml \
-o Arch.pretrained=./pretrained/MobileNetV1_pretrained/ \
-o Global.save_inference_dir=./inference/MobileNetV1/
```
在上述命令中,通过参数 `Arch.pretrained` 指定训练过程中保存的模型参数文件,也可以指定参数 `Arch.pretrained=True` 加载 PaddleClas 提供的基于 ImageNet1k 的预训练模型参数,最终在 `inference/MobileNetV1` 文件夹下会保存得到 `inference.pdmodel``inference.pdiparmas` 文件。
### 2.2 benchmark二进制文件下载
* 使用adb(Android Debug Bridge)工具可以连接Android手机与PC端,并进行开发调试等。安装好adb,并确保PC端和手机连接成功后,使用以下命令可以查看手机的ARM版本,并基于此选择合适的预编译库。
```shell
adb shell getprop ro.product.cpu.abi
```
* 下载benchmark_bin文件
请根据所用Android手机的ARM版本选择,ARM版本为v8,则使用以下命令下载:
```shell
wget -c https://paddle-inference-dist.bj.bcebos.com/PaddleLite/benchmark_0/benchmark_bin_v8
```
如果查看的ARM版本为v7,则需要下载v7版本的benchmark_bin文件,下载命令如下:
```shell
wget -c https://paddle-inference-dist.bj.bcebos.com/PaddleLite/benchmark_0/benchmark_bin_v7
```
### 2.3 模型速度benchmark
PC端和手机连接成功后,使用下面的命令开始模型评估。
```
sh deploy/lite/benchmark/benchmark.sh ./benchmark_bin_v8 ./inference result_armv8.txt true
```
其中`./benchmark_bin_v8`为benchmark二进制文件路径,`./inference`为所有需要评测的模型的路径,`result_armv8.txt`为保存的结果文件,最后的参数`true`表示在评估之后会首先进行模型优化。最终在当前文件夹下会输出`result_armv8.txt`的评估结果文件,具体信息如下。
```
PaddleLite Benchmark
Threads=1 Warmup=10 Repeats=30
MobileNetV1 min = 30.89100 max = 30.73600 average = 30.79750
Threads=2 Warmup=10 Repeats=30
MobileNetV1 min = 18.26600 max = 18.14000 average = 18.21637
Threads=4 Warmup=10 Repeats=30
MobileNetV1 min = 10.03200 max = 9.94300 average = 9.97627
```
这里给出了不同线程数下的模型预测速度,单位为FPS,以线程数为1为例,MobileNetV1在骁龙855上的平均速度为`30.79750FPS`
### 2.4 模型优化与速度评估
* 在2.3节中提到了在模型评估之前对其进行优化,在这里也可以首先对模型进行优化,再直接加载优化后的模型进行速度评估。
* Paddle-Lite 提供了多种策略来自动优化原始的训练模型,其中包括量化、子图融合、混合调度、Kernel优选等等方法。为了使优化过程更加方便易用,Paddle-Lite提供了opt 工具来自动完成优化步骤,输出一个轻量的、最优的可执行模型。可以在[Paddle-Lite模型优化工具页面](https://paddle-lite.readthedocs.io/zh/latest/user_guides/model_optimize_tool.html)下载。在这里以`macOS`开发环境为例,下载[opt_mac](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/opt_mac)模型优化工具,并使用下面的命令对模型进行优化。
```shell
model_file="../MobileNetV1/inference.pdmodel"
param_file="../MobileNetV1/inference.pdiparams"
opt_models_dir="./opt_models"
mkdir ${opt_models_dir}
./opt_mac --model_file=${model_file} \
--param_file=${param_file} \
--valid_targets=arm \
--optimize_out_type=naive_buffer \
--prefer_int8_kernel=false \
--optimize_out=${opt_models_dir}/MobileNetV1
```
其中`model_file``param_file`分别是导出的inference模型结构文件与参数文件地址,转换成功后,会在`opt_models`文件夹下生成`MobileNetV1.nb`文件。
使用benchmark_bin文件加载优化后的模型进行评估,具体的命令如下。
```shell
bash benchmark.sh ./benchmark_bin_v8 ./opt_models result_armv8.txt
```
最终`result_armv8.txt`中结果如下:
```
PaddleLite Benchmark
Threads=1 Warmup=10 Repeats=30
MobileNetV1_lite min = 30.89500 max = 30.78500 average = 30.84173
Threads=2 Warmup=10 Repeats=30
MobileNetV1_lite min = 18.25300 max = 18.11000 average = 18.18017
Threads=4 Warmup=10 Repeats=30
MobileNetV1_lite min = 10.00600 max = 9.90000 average = 9.96177
```
以线程数为1为例,MobileNetV1在骁龙855上的平均速度为`30.84173 ms`
更加具体的参数解释与Paddle-Lite使用方法可以参考 [Paddle-Lite 文档](https://paddle-lite.readthedocs.io/zh/latest/)
......@@ -3,7 +3,21 @@
此教程主要针对初级用户,即深度学习相关理论知识处于入门阶段,具有一定的 Python 基础,能够阅读简单代码的用户。此内容主要包括使用 PaddleClas 进行图像分类网络训练及模型预测。
---
## 目录
- [1. 基础知识](#1)
- [2. 环境安装与配置](#2)
- [3. 数据的准备与处理](#3)
- [4. 模型训练](#4)
- [4.1 使用CPU进行模型训练](#4.1)
- [4.1.1 不使用预训练模型进行训练](#4.1.1)
- [4.1.2 不使用预训练模型进行训练](#4.1.2)
- [4.2 使用GPU进行模型训练](#4.2)
- [4.2.1 不使用预训练模型进行训练](#4.2.1)
- [4.2.2 不使用预训练模型进行训练](#4.2.2)
- [5. 模型预测](#5)
<a name="1"></a>
## 1. 基础知识
图像分类顾名思义就是一个模式分类问题,是计算机视觉中最基础的任务,它的目标是将不同的图像,划分到不同的类别。以下会对整个模型训练过程中需要了解到的一些概念做简单的解释,希望能够对初次体验 PaddleClas 的你有所帮助:
......@@ -30,10 +44,12 @@
- Top1 Acc:预测结果中概率最大的所在分类正确,则判定为正确;
- Top5 Acc:预测结果中概率排名前 5 中有分类正确,则判定为正确;
<a name="2"></a>
## 2. 环境安装与配置
具体安装步骤可详看[Paddle 安装文档](../installation/install_paddle.md)[PaddleClas 安装文档](../installation/install_paddleclas.md)
<a name="3"></a>
## 3. 数据的准备与处理
进入PaddleClas目录:
......@@ -72,15 +88,16 @@ cd ../../
# windoes直接打开PaddleClas根目录即可
```
<a name="4"></a>
## 4. 模型训练
<a name="4.1"></a>
### 4.1 使用CPU进行模型训练
由于使用CPU来进行模型训练,计算速度较慢,因此,此处以 ShuffleNetV2_x0_25 为例。此模型计算量较小,在 CPU 上计算速度较快。但是也因为模型较小,训练好的模型精度也不会太高。
#### 4.1.1 不使用预训练模型
<a name="4.1.1"></a>
#### 4.1.1 不使用预训练模型进行训练
```shell
# windows在cmd中进入PaddleClas根目录,执行此命令
......@@ -91,7 +108,8 @@ python tools/train.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25
- `yaml``Global.device` 参数设置为`cpu`,即使用CPU进行训练(若不设置,此参数默认为`True`
- `yaml`文件中`epochs`参数设置为20,说明对整个数据集进行20个epoch迭代,预计训练20分钟左右(不同CPU,训练时间略有不同),此时训练模型不充分。若提高训练模型精度,请将此参数设大,如**40**,训练时间也会相应延长
#### 4.1.2 使用预训练模型
<a name="4.1.2"></a>
#### 4.1.2 使用预训练模型进行训练
```shell
python tools/train.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml -o Arch.pretrained=True
......@@ -101,6 +119,7 @@ python tools/train.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25
可以使用将使用与不使用预训练模型训练进行对比,观察 loss 的下降情况。
<a name="4.2"></a>
### 4.2 使用GPU进行模型训练
由于 GPU 训练速度更快,可以使用更复杂模型,因此以 ResNet50_vd 为例。与 ShuffleNetV2_x0_25 相比,此模型计算量较大,训练好的模型精度也会更高。
......@@ -119,7 +138,8 @@ python tools/train.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25
set CUDA_VISIBLE_DEVICES=0
```
#### 不使用预训练模型
<a name="4.2.1"></a>
#### 4.2.1 不使用预训练模型进行训练
```shell
python tools/train.py -c ./ppcls/configs/quick_start/ResNet50_vd.yaml
......@@ -131,6 +151,7 @@ python tools/train.py -c ./ppcls/configs/quick_start/ResNet50_vd.yaml
<img src="../../images/quick_start/r50_vd_acc.png" width = "800" />
</div>
<a name="4.2.1"></a>
#### 4.2.1 使用预训练模型进行训练
基于 ImageNet1k 分类预训练模型进行微调,训练脚本如下所示
......@@ -147,6 +168,7 @@ python tools/train.py -c ./ppcls/configs/quick_start/ResNet50_vd.yaml -o Arch.pr
<img src="../../images/quick_start/r50_vd_pretrained_acc.png" width = "800" />
</div>
<a name="5"></a>
## 5. 模型预测
训练完成后,可以使用训练好的模型进行预测,以训练的 ResNet50_vd 模型为例,预测代码如下:
......
......@@ -40,8 +40,10 @@
| 模型简介 | 推荐场景 | inference模型 | 预测配置文件 | 构建索引库的配置文件 |
| ------------ | ------------- | -------- | ------- | -------- |
| 轻量级通用主体检测模型 | 通用场景 |[模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar) | - | - |
| 轻量级通用识别模型 | 通用场景 | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar) | [inference_general.yaml](../../../deploy/configs/inference_general.yaml) | [build_general.yaml](../../../deploy/configs/build_general.yaml) |
| 轻量级通用主体检测模型 | 通用场景 |[tar 格式文件下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar) [zip 格式文件下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.zip) | - | - |
| 轻量级通用识别模型 | 通用场景 | [tar 格式下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar) [zip 格式文件下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.zip) | [inference_general.yaml](../../../deploy/configs/inference_general.yaml) | [build_general.yaml](../../../deploy/configs/build_general.yaml) |
注意:由于部分解压缩软件在解压上述 `tar` 格式文件时存在问题,建议非命令行用户下载 `zip` 格式文件并解压。`tar` 格式文件建议使用命令 `tar xf xxx.tar` 解压。
本章节 demo 数据下载地址如下: [瓶装饮料数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar)
......
......@@ -4,7 +4,6 @@ Global:
pretrained_model: null
output_dir: ./output/
device: gpu
class_num: 102
save_interval: 1
eval_during_train: True
eval_interval: 1
......@@ -17,8 +16,9 @@ Global:
# model architecture
Arch:
name: ResNet50_vd
name: ResNet50_vd
class_num: 102
# loss function config for traing/eval process
Loss:
Train:
......
......@@ -44,12 +44,18 @@ class CombinedLoss(nn.Layer):
def __call__(self, input, batch):
loss_dict = {}
for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch)
weight = self.loss_weight[idx]
loss = {key: loss[key] * weight for key in loss}
# just for accelerate classification traing speed
if len(self.loss_func) == 1:
loss = self.loss_func[0](input, batch)
loss_dict.update(loss)
loss_dict["loss"] = paddle.add_n(list(loss_dict.values()))
loss_dict["loss"] = list(loss.values())[0]
else:
for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch)
weight = self.loss_weight[idx]
loss = {key: loss[key] * weight for key in loss}
loss_dict.update(loss)
loss_dict["loss"] = paddle.add_n(list(loss_dict.values()))
return loss_dict
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册