未验证 提交 1180a55a 编写于 作者: W Wei Shengyu 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

此差异已折叠。
此差异已折叠。
此差异已折叠。
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import KaimingNormal
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {"MobileNetV1_x0_25": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams",
"MobileNetV1_x0_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams",
"MobileNetV1_x0_75": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams",
"MobileNetV1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams"}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='relu',
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
initializer=KaimingNormal(), name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name + "_bn_scale"),
bias_attr=ParamAttr(name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class DepthwiseSeparable(nn.Layer):
def __init__(self,
num_channels,
num_filters1,
num_filters2,
num_groups,
stride,
scale,
name=None):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
name=name + "_dw")
self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0,
name=name + "_sep")
def forward(self, inputs):
y = self._depthwise_conv(inputs)
y = self._pointwise_conv(y)
return y
class MobileNet(nn.Layer):
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNet, self).__init__()
self.scale = scale
self.block_list = []
self.conv1 = ConvBNLayer(
num_channels=3,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1,
name="conv1")
conv2_1 = self.add_sublayer(
"conv2_1",
sublayer=DepthwiseSeparable(
num_channels=int(32 * scale),
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale,
name="conv2_1"))
self.block_list.append(conv2_1)
conv2_2 = self.add_sublayer(
"conv2_2",
sublayer=DepthwiseSeparable(
num_channels=int(64 * scale),
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=2,
scale=scale,
name="conv2_2"))
self.block_list.append(conv2_2)
conv3_1 = self.add_sublayer(
"conv3_1",
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale,
name="conv3_1"))
self.block_list.append(conv3_1)
conv3_2 = self.add_sublayer(
"conv3_2",
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=2,
scale=scale,
name="conv3_2"))
self.block_list.append(conv3_2)
conv4_1 = self.add_sublayer(
"conv4_1",
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale,
name="conv4_1"))
self.block_list.append(conv4_1)
conv4_2 = self.add_sublayer(
"conv4_2",
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=2,
scale=scale,
name="conv4_2"))
self.block_list.append(conv4_2)
for i in range(5):
conv5 = self.add_sublayer(
"conv5_" + str(i + 1),
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
scale=scale,
name="conv5_" + str(i + 1)))
self.block_list.append(conv5)
conv5_6 = self.add_sublayer(
"conv5_6",
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=2,
scale=scale,
name="conv5_6"))
self.block_list.append(conv5_6)
conv6 = self.add_sublayer(
"conv6",
sublayer=DepthwiseSeparable(
num_channels=int(1024 * scale),
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=1,
scale=scale,
name="conv6"))
self.block_list.append(conv6)
self.pool2d_avg = AdaptiveAvgPool2D(1)
self.out = Linear(
int(1024 * scale),
class_dim,
weight_attr=ParamAttr(
initializer=KaimingNormal(), name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
def forward(self, inputs):
y = self.conv1(inputs)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.flatten(y, start_axis=1, stop_axis=-1)
y = self.out(y)
return y
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def MobileNetV1_x0_25(pretrained=False, use_ssld=False, **kwargs):
model = MobileNet(scale=0.25, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_25"], use_ssld=use_ssld)
return model
def MobileNetV1_x0_5(pretrained=False, use_ssld=False, **kwargs):
model = MobileNet(scale=0.5, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_5"], use_ssld=use_ssld)
return model
def MobileNetV1_x0_75(pretrained=False, use_ssld=False, **kwargs):
model = MobileNet(scale=0.75, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_75"], use_ssld=use_ssld)
return model
def MobileNetV1(pretrained=False, use_ssld=False, **kwargs):
model = MobileNet(scale=1.0, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1"], use_ssld=use_ssld)
return model
\ No newline at end of file
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.functional import hardswish, hardsigmoid
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.regularizer import L2Decay
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {"MobileNetV3_small_x0_35": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams",
"MobileNetV3_small_x0_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams",
"MobileNetV3_small_x0_75": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams",
"MobileNetV3_small_x1_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams",
"MobileNetV3_small_x1_25": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams",
"MobileNetV3_large_x0_35": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams",
"MobileNetV3_large_x0_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams",
"MobileNetV3_large_x0_75": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams",
"MobileNetV3_large_x1_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams",
"MobileNetV3_large_x1_25": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams"}
__all__ = list(MODEL_URLS.keys())
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(nn.Layer):
def __init__(self,
scale=1.0,
model_name="small",
dropout_prob=0.2,
class_dim=1000):
super(MobileNetV3, self).__init__()
inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1],
[5, 72, 40, True, "relu", 2],
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1],
[3, 240, 80, False, "hardswish", 2],
[3, 200, 80, False, "hardswish", 1],
[3, 184, 80, False, "hardswish", 1],
[3, 184, 80, False, "hardswish", 1],
[3, 480, 112, True, "hardswish", 1],
[3, 672, 112, True, "hardswish", 1],
[5, 672, 160, True, "hardswish", 2],
[5, 960, 160, True, "hardswish", 1],
[5, 960, 160, True, "hardswish", 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2],
[3, 88, 24, False, "relu", 1],
[5, 96, 40, True, "hardswish", 2],
[5, 240, 40, True, "hardswish", 1],
[5, 240, 40, True, "hardswish", 1],
[5, 120, 48, True, "hardswish", 1],
[5, 144, 48, True, "hardswish", 1],
[5, 288, 96, True, "hardswish", 2],
[5, 576, 96, True, "hardswish", 1],
[5, 576, 96, True, "hardswish", 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
else:
raise NotImplementedError(
"mode[{}_model] is not implemented!".format(model_name))
self.conv1 = ConvBNLayer(
in_c=3,
out_c=make_divisible(inplanes * scale),
filter_size=3,
stride=2,
padding=1,
num_groups=1,
if_act=True,
act="hardswish",
name="conv1")
self.block_list = []
i = 0
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in self.cfg:
block = self.add_sublayer(
"conv" + str(i + 2),
ResidualUnit(
in_c=inplanes,
mid_c=make_divisible(scale * exp),
out_c=make_divisible(scale * c),
filter_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2)))
self.block_list.append(block)
inplanes = make_divisible(scale * c)
i += 1
self.last_second_conv = ConvBNLayer(
in_c=inplanes,
out_c=make_divisible(scale * self.cls_ch_squeeze),
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act="hardswish",
name="conv_last")
self.pool = AdaptiveAvgPool2D(1)
self.last_conv = Conv2D(
in_channels=make_divisible(scale * self.cls_ch_squeeze),
out_channels=self.cls_ch_expand,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name="last_1x1_conv_weights"),
bias_attr=False)
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
self.out = Linear(
self.cls_ch_expand,
class_dim,
weight_attr=ParamAttr("fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs):
x = self.conv1(inputs)
for block in self.block_list:
x = block(x)
x = self.last_second_conv(x)
x = self.pool(x)
x = self.last_conv(x)
x = hardswish(x)
x = self.dropout(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.out(x)
return x
class ConvBNLayer(nn.Layer):
def __init__(self,
in_c,
out_c,
filter_size,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
use_cudnn=True,
name=""):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = Conv2D(
in_channels=in_c,
out_channels=out_c,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
self.bn = BatchNorm(
num_channels=out_c,
act=None,
param_attr=ParamAttr(
name=name + "_bn_scale", regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
name=name + "_bn_offset", regularizer=L2Decay(0.0)),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = F.relu(x)
elif self.act == "hardswish":
x = hardswish(x)
else:
print("The activation function is selected incorrectly.")
exit()
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_c,
mid_c,
out_c,
filter_size,
stride,
use_se,
act=None,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_c == out_c
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_c=in_c,
out_c=mid_c,
filter_size=1,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_c=mid_c,
out_c=mid_c,
filter_size=filter_size,
stride=stride,
padding=int((filter_size - 1) // 2),
num_groups=mid_c,
if_act=True,
act=act,
name=name + "_depthwise")
if self.if_se:
self.mid_se = SEModule(mid_c, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_c=mid_c,
out_c=out_c,
filter_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name=name + "_linear")
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.add(inputs, x)
return x
class SEModule(nn.Layer):
def __init__(self, channel, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = hardsigmoid(outputs, slope=0.2, offset=0.5)
return paddle.multiply(x=inputs, y=outputs)
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def MobileNetV3_small_x0_35(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="small", scale=0.35, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_35"], use_ssld=use_ssld)
return model
def MobileNetV3_small_x0_5(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="small", scale=0.5, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_5"], use_ssld=use_ssld)
return model
def MobileNetV3_small_x0_75(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="small", scale=0.75, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_75"], use_ssld=use_ssld)
return model
def MobileNetV3_small_x1_0(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="small", scale=1.0, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_0"], use_ssld=use_ssld)
return model
def MobileNetV3_small_x1_25(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="small", scale=1.25, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_25"], use_ssld=use_ssld)
return model
def MobileNetV3_large_x0_35(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="large", scale=0.35, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_35"], use_ssld=use_ssld)
return model
def MobileNetV3_large_x0_5(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="large", scale=0.5, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_5"], use_ssld=use_ssld)
return model
def MobileNetV3_large_x0_75(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="large", scale=0.75, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_75"], use_ssld=use_ssld)
return model
def MobileNetV3_large_x1_0(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="large", scale=1.0, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_0"], use_ssld=use_ssld)
return model
def MobileNetV3_large_x1_25(pretrained=False, use_ssld=False, **kwargs):
model = MobileNetV3(model_name="large", scale=1.25, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_25"], use_ssld=use_ssld)
return model
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {"ResNet18": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams",
"ResNet34": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams",
"ResNet50": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams",
"ResNet101": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams",
"ResNet152": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format="NCHW"):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
data_format=data_format)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(bn_name + "_offset"),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance",
data_layout=data_format)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None,
data_format="NCHW"):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu",
name=name + "_branch2a",
data_format=data_format)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_branch2b",
data_format=data_format)
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c",
data_format=data_format)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride,
name=name + "_branch1",
data_format=data_format)
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv2)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None,
data_format="NCHW"):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_branch2a",
data_format=data_format)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b",
data_format=data_format)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1",
data_format=data_format)
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv1)
y = F.relu(y)
return y
class ResNet(nn.Layer):
def __init__(self, layers=50, class_dim=1000, input_image_channel=3, data_format="NCHW"):
super(ResNet, self).__init__()
self.layers = layers
self.data_format = data_format
self.input_image_channel = input_image_channel
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=self.input_image_channel,
num_filters=64,
filter_size=7,
stride=2,
act="relu",
name="conv1",
data_format=self.data_format)
self.pool2d_max = MaxPool2D(
kernel_size=3,
stride=2,
padding=1,
data_format=self.data_format)
self.block_list = []
if layers >= 50:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
conv_name,
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name,
data_format=self.data_format))
self.block_list.append(bottleneck_block)
shortcut = True
else:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
conv_name,
BasicBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name,
data_format=self.data_format))
self.block_list.append(basic_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
with paddle.static.amp.fp16_guard():
if self.data_format == "NHWC":
inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
inputs.stop_gradient = True
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def ResNet18(pretrained=False, use_ssld=False, **kwargs):
model = ResNet(layers=18, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld=use_ssld)
return model
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
model = ResNet(layers=34, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld=use_ssld)
return model
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
model = ResNet(layers=50, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld=use_ssld)
return model
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
model = ResNet(layers=101, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld=use_ssld)
return model
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
model = ResNet(layers=152, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld=use_ssld)
return model
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"ResNet18_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams",
"ResNet34_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams",
"ResNet50_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams",
"ResNet101_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams",
"ResNet152_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams",
"ResNet200_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
lr_mult=1.0,
name=None):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(
name=name + "_weights", learning_rate=lr_mult),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(
name=bn_name + '_scale', learning_rate=lr_mult),
bias_attr=ParamAttr(
bn_name + '_offset', learning_rate=lr_mult),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
lr_mult=1.0,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
lr_mult=lr_mult,
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
lr_mult=lr_mult,
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
lr_mult=lr_mult,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv2)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
lr_mult=1.0,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
lr_mult=lr_mult,
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
lr_mult=lr_mult,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv1)
y = F.relu(y)
return y
class ResNet_vd(nn.Layer):
def __init__(self,
layers=50,
class_dim=1000,
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
super(ResNet_vd, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
self.lr_mult_list = lr_mult_list
assert isinstance(self.lr_mult_list, (
list, tuple
)), "lr_mult_list should be in (list, tuple) but got {}".format(
type(self.lr_mult_list))
assert len(
self.lr_mult_list
) == 5, "lr_mult_list length should should be 5 but got {}".format(
len(self.lr_mult_list))
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512]
self.conv1_1 = ConvBNLayer(
num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
lr_mult=self.lr_mult_list[0],
name="conv1_1")
self.conv1_2 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
lr_mult=self.lr_mult_list[0],
name="conv1_2")
self.conv1_3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
lr_mult=self.lr_mult_list[0],
name="conv1_3")
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
self.block_list = []
if layers >= 50:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
lr_mult=self.lr_mult_list[block + 1],
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
else:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name,
lr_mult=self.lr_mult_list[block + 1]))
self.block_list.append(basic_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2D(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
model = ResNet_vd(layers=18, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld=use_ssld)
return model
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
model = ResNet_vd(layers=34, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld=use_ssld)
return model
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
model = ResNet_vd(layers=50, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld=use_ssld)
return model
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
model = ResNet_vd(layers=101, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld=use_ssld)
return model
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
model = ResNet_vd(layers=152, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld=use_ssld)
return model
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
model = ResNet_vd(layers=200, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld=use_ssld)
return model
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"VGG11": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams",
"VGG13": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams",
"VGG16": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams",
"VGG19": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class ConvBlock(nn.Layer):
def __init__(self, input_channels, output_channels, groups, name=None):
super(ConvBlock, self).__init__()
self.groups = groups
self._conv_1 = Conv2D(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "1_weights"),
bias_attr=False)
if groups == 2 or groups == 3 or groups == 4:
self._conv_2 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "2_weights"),
bias_attr=False)
if groups == 3 or groups == 4:
self._conv_3 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "3_weights"),
bias_attr=False)
if groups == 4:
self._conv_4 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "4_weights"),
bias_attr=False)
self._pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
def forward(self, inputs):
x = self._conv_1(inputs)
x = F.relu(x)
if self.groups == 2 or self.groups == 3 or self.groups == 4:
x = self._conv_2(x)
x = F.relu(x)
if self.groups == 3 or self.groups == 4:
x = self._conv_3(x)
x = F.relu(x)
if self.groups == 4:
x = self._conv_4(x)
x = F.relu(x)
x = self._pool(x)
return x
class VGGNet(nn.Layer):
def __init__(self, layers=11, stop_grad_layers=0, class_dim=1000):
super(VGGNet, self).__init__()
self.layers = layers
self.stop_grad_layers = stop_grad_layers
self.vgg_configure = {
11: [1, 1, 2, 2, 2],
13: [2, 2, 2, 2, 2],
16: [2, 2, 3, 3, 3],
19: [2, 2, 4, 4, 4]
}
assert self.layers in self.vgg_configure.keys(), \
"supported layers are {} but input layer is {}".format(
self.vgg_configure.keys(), layers)
self.groups = self.vgg_configure[self.layers]
self._conv_block_1 = ConvBlock(3, 64, self.groups[0], name="conv1_")
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
for idx, block in enumerate([
self._conv_block_1, self._conv_block_2, self._conv_block_3,
self._conv_block_4, self._conv_block_5
]):
if self.stop_grad_layers >= idx + 1:
for param in block.parameters():
param.trainable = False
self._drop = Dropout(p=0.5, mode="downscale_in_infer")
self._fc1 = Linear(
7 * 7 * 512,
4096,
weight_attr=ParamAttr(name="fc6_weights"),
bias_attr=ParamAttr(name="fc6_offset"))
self._fc2 = Linear(
4096,
4096,
weight_attr=ParamAttr(name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
self._out = Linear(
4096,
class_dim,
weight_attr=ParamAttr(name="fc8_weights"),
bias_attr=ParamAttr(name="fc8_offset"))
def forward(self, inputs):
x = self._conv_block_1(inputs)
x = self._conv_block_2(x)
x = self._conv_block_3(x)
x = self._conv_block_4(x)
x = self._conv_block_5(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self._fc1(x)
x = F.relu(x)
x = self._drop(x)
x = self._fc2(x)
x = F.relu(x)
x = self._drop(x)
x = self._out(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def VGG11(pretrained, model, model_url, use_ssld=False, **kwargs):
model = VGGNet(layers=11, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG11"], use_ssld=use_ssld)
return model
def VGG13(pretrained, model, model_url, use_ssld=False, **kwargs):
model = VGGNet(layers=13, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG13"], use_ssld=use_ssld)
return model
def VGG16(pretrained, model, model_url, use_ssld=False, **kwargs):
model = VGGNet(layers=16, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG16"], use_ssld=use_ssld)
return model
def VGG19(pretrained, model, model_url, use_ssld=False, **kwargs):
model = VGGNet(layers=19, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG19"], use_ssld=use_ssld)
return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册