提交 10ca9f67 编写于 作者: littletomatodonkey's avatar littletomatodonkey

cherry-pick add hs-resnet

上级 4f885038
...@@ -6,6 +6,9 @@ ...@@ -6,6 +6,9 @@
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios. PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
**Note**: Baidu proposed a new image classification network structure **`Hs-ResNet`**, which reaches 81.3% on ImageNet-1k dataset, while its `params` is almost same as `ResNet50`.The arxiv link is here: [HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network](https://arxiv.org/pdf/2010.07621.pdf). The model structure and the pretrained weights are coming soon!
**Recent update** **Recent update**
- 2020.09.17 Add `Res2Net50_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.1%. Add `Res2Net101_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.9%. - 2020.09.17 Add `Res2Net50_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.1%. Add `Res2Net101_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.9%.
- 2020.10.12 Add Paddle-Lite demo。 - 2020.10.12 Add Paddle-Lite demo。
......
...@@ -6,6 +6,9 @@ ...@@ -6,6 +6,9 @@
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**注意**: 百度提出了一个新的图像分类网络结构**`HS-ResNet`**,基于ImageNet-1k数据集,`Hs-ResNet`在与`ResNet`的params相近的情况下,Top-1 Acc达到了81.3%,相应的Arxiv文章链接可以参考这里:[HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network](https://arxiv.org/pdf/2010.07621.pdf),模型结构和预训练模型参数即将开源,敬请期待!
**近期更新** **近期更新**
- 2020.10.20 添加 `Res2Net50_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.1%;添加 `Res2Net101_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.9%。 - 2020.10.20 添加 `Res2Net50_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.1%;添加 `Res2Net101_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.9%。
- 2020.10.12 添加Paddle-Lite demo。 - 2020.10.12 添加Paddle-Lite demo。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册