提交 0a655a65 编写于 作者: W Wei Shengyu 提交者: GitHub

Merge pull request #1000 from cuicheng01/develop

修复levit初始化bug和tnt不能export model的问题
......@@ -80,7 +80,10 @@ class Linear_BN(nn.Sequential):
super().__init__()
self.add_sublayer('c', nn.Linear(a, b, bias_attr=False))
bn = nn.BatchNorm1D(b)
ones_(bn.weight)
if bn_weight_init == 0:
zeros_(bn.weight)
else:
ones_(bn.weight)
zeros_(bn.bias)
self.add_sublayer('bn', bn)
......
......@@ -44,7 +44,7 @@ def drop_path(x, drop_prob=0., training=False):
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.add(keep_prob, paddle.rand(shape, dtype=x.dtype))
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
......@@ -114,14 +114,17 @@ class Attention(nn.Layer):
(2, 0, 3, 1, 4))
q, k = qk[0], qk[1]
v = self.v(x).reshape((B, N, self.num_heads, -1)).transpose(
(0, 2, 1, 3))
v = self.v(x).reshape(
(B, N, self.num_heads, x.shape[-1] // self.num_heads)).transpose(
(0, 2, 1, 3))
attn = (q @k.transpose((0, 1, 3, 2))) * self.scale
attn = paddle.matmul(q, k.transpose((0, 1, 3, 2))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn @v).transpose((0, 2, 1, 3)).reshape((B, N, -1))
x = paddle.matmul(attn, v)
x = x.transpose((0, 2, 1, 3)).reshape(
(B, N, x.shape[-1] * x.shape[-3]))
x = self.proj(x)
x = self.proj_drop(x)
return x
......@@ -182,18 +185,22 @@ class Block(nn.Layer):
def forward(self, pixel_embed, patch_embed):
# inner
pixel_embed = pixel_embed + self.drop_path(
self.attn_in(self.norm_in(pixel_embed)))
pixel_embed = pixel_embed + self.drop_path(
self.mlp_in(self.norm_mlp_in(pixel_embed)))
pixel_embed = paddle.add(
pixel_embed,
self.drop_path(self.attn_in(self.norm_in(pixel_embed))))
pixel_embed = paddle.add(
pixel_embed,
self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed))))
# outer
B, N, C = patch_embed.shape
patch_embed[:, 1:] = patch_embed[:, 1:] + self.proj(
self.norm1_proj(pixel_embed).reshape((B, N - 1, -1)))
patch_embed = patch_embed + self.drop_path(
self.attn_out(self.norm_out(patch_embed)))
patch_embed = patch_embed + self.drop_path(
self.mlp(self.norm_mlp(patch_embed)))
patch_embed[:, 1:] = paddle.add(
patch_embed[:, 1:],
self.proj(self.norm1_proj(pixel_embed).reshape((B, N - 1, -1))))
patch_embed = paddle.add(
patch_embed,
self.drop_path(self.attn_out(self.norm_out(patch_embed))))
patch_embed = paddle.add(
patch_embed, self.drop_path(self.mlp(self.norm_mlp(patch_embed))))
return pixel_embed, patch_embed
......@@ -222,11 +229,10 @@ class PixelEmbed(nn.Layer):
x = self.proj(x)
x = nn.functional.unfold(x, self.new_patch_size, self.new_patch_size)
x = x.transpose((0, 2, 1)).reshape(
(B * self.num_patches, self.in_dim, self.new_patch_size,
self.new_patch_size))
(-1, self.in_dim, self.new_patch_size, self.new_patch_size))
x = x + pixel_pos
x = x.reshape((B * self.num_patches, self.in_dim, -1)).transpose(
(0, 2, 1))
x = x.reshape((-1, self.in_dim, self.new_patch_size *
self.new_patch_size)).transpose((0, 2, 1))
return x
......@@ -328,7 +334,8 @@ class TNT(nn.Layer):
patch_embed = self.norm2_proj(
self.proj(
self.norm1_proj(
pixel_embed.reshape((B, self.num_patches, -1)))))
pixel_embed.reshape((-1, self.num_patches, pixel_embed.
shape[-1] * pixel_embed.shape[-2])))))
patch_embed = paddle.concat(
(self.cls_token.expand((B, -1, -1)), patch_embed), axis=1)
patch_embed = patch_embed + self.patch_pos
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册