未验证 提交 07330e0e 编写于 作者: L littletomatodonkey 提交者: GitHub

fix resnest typo (#380)

fix resnest, ghostnet typo
上级 96c078da
mode: 'train' mode: 'train'
ARCHITECTURE: ARCHITECTURE:
name: "ShuffleNetV2" name: "ShuffleNetV2_x1_0"
pretrained_model: "" pretrained_model: ""
model_save_dir: "./output/" model_save_dir: "./output/"
......
...@@ -32,14 +32,13 @@ from .ghostnet import GhostNet_x0_5, GhostNet_x1_0, GhostNet_x1_3 ...@@ -32,14 +32,13 @@ from .ghostnet import GhostNet_x0_5, GhostNet_x1_0, GhostNet_x1_3
from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1 from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0 from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
from .mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25 from .mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
from .alexnet import AlexNet from .alexnet import AlexNet
from .inception_v3 import InceptionV3 from .inception_v3 import InceptionV3
from .inception_v4 import InceptionV4 from .inception_v4 import InceptionV4
from .xception import Xception41, Xception65, Xception71 from .xception import Xception41, Xception65, Xception71
from .xception_deeplab import Xception41_deeplab, Xception65_deeplab, Xception71_deeplab from .xception_deeplab import Xception41_deeplab, Xception65_deeplab, Xception71_deeplab
from .resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl from .resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
from .squeezenet import SqueezeNet1_0, SqueezeNet1_1 from .squeezenet import SqueezeNet1_0, SqueezeNet1_1
from .vgg import VGG11, VGG13, VGG16, VGG19 from .vgg import VGG11, VGG13, VGG16, VGG19
from .darknet import DarkNet53 from .darknet import DarkNet53
......
...@@ -44,7 +44,6 @@ class ConvBNLayer(nn.Layer): ...@@ -44,7 +44,6 @@ class ConvBNLayer(nn.Layer):
bias_attr=False) bias_attr=False)
bn_name = name + "_bn" bn_name = name + "_bn"
# In the old version, moving_variance_name was name + "_variance"
self._batch_norm = BatchNorm( self._batch_norm = BatchNorm(
num_channels=out_channels, num_channels=out_channels,
act=act, act=act,
...@@ -53,9 +52,7 @@ class ConvBNLayer(nn.Layer): ...@@ -53,9 +52,7 @@ class ConvBNLayer(nn.Layer):
bias_attr=ParamAttr( bias_attr=ParamAttr(
name=bn_name + "_offset", regularizer=L2Decay(0.0)), name=bn_name + "_offset", regularizer=L2Decay(0.0)),
moving_mean_name=bn_name + "_mean", moving_mean_name=bn_name + "_mean",
moving_variance_name=name + moving_variance_name=bn_name + "_variance")
"_variance" # wrong due to an old typo, will be fixed later.
)
def forward(self, inputs): def forward(self, inputs):
y = self._conv(inputs) y = self._conv(inputs)
......
...@@ -120,7 +120,7 @@ class SplatConv(nn.Layer): ...@@ -120,7 +120,7 @@ class SplatConv(nn.Layer):
stride=stride, stride=stride,
groups=groups * radix, groups=groups * radix,
act="relu", act="relu",
name=name + "_splat1") name=name + "_1_weights")
self.avg_pool2d = AdaptiveAvgPool2D(1) self.avg_pool2d = AdaptiveAvgPool2D(1)
...@@ -134,7 +134,7 @@ class SplatConv(nn.Layer): ...@@ -134,7 +134,7 @@ class SplatConv(nn.Layer):
stride=1, stride=1,
groups=groups, groups=groups,
act="relu", act="relu",
name=name + "_splat2") name=name + "_2_weights")
# to calc atten # to calc atten
self.conv3 = Conv2D( self.conv3 = Conv2D(
...@@ -145,7 +145,7 @@ class SplatConv(nn.Layer): ...@@ -145,7 +145,7 @@ class SplatConv(nn.Layer):
padding=0, padding=0,
groups=groups, groups=groups,
weight_attr=ParamAttr( weight_attr=ParamAttr(
name=name + "_splat_weights", initializer=KaimingNormal()), name=name + "_weights", initializer=KaimingNormal()),
bias_attr=False) bias_attr=False)
self.rsoftmax = rSoftmax(radix=radix, cardinality=groups) self.rsoftmax = rSoftmax(radix=radix, cardinality=groups)
...@@ -233,7 +233,7 @@ class BottleneckBlock(nn.Layer): ...@@ -233,7 +233,7 @@ class BottleneckBlock(nn.Layer):
bias=False, bias=False,
radix=radix, radix=radix,
rectify_avg=rectify_avg, rectify_avg=rectify_avg,
name=name + "_splatconv") name=name + "_splat")
else: else:
self.conv2 = ConvBNLayer( self.conv2 = ConvBNLayer(
num_channels=group_width, num_channels=group_width,
...@@ -403,10 +403,10 @@ class ResNeStLayer(nn.Layer): ...@@ -403,10 +403,10 @@ class ResNeStLayer(nn.Layer):
self.inplanes = planes * 4 self.inplanes = planes * 4
self.bottleneck_block_list = [bottleneck_func] self.bottleneck_block_list = [bottleneck_func]
for i in range(1, blocks): for i in range(1, blocks):
name = name + "_bottleneck_" + str(i) curr_name = name + "_bottleneck_" + str(i)
bottleneck_func = self.add_sublayer( bottleneck_func = self.add_sublayer(
name, curr_name,
BottleneckBlock( BottleneckBlock(
inplanes=self.inplanes, inplanes=self.inplanes,
planes=planes, planes=planes,
...@@ -419,7 +419,7 @@ class ResNeStLayer(nn.Layer): ...@@ -419,7 +419,7 @@ class ResNeStLayer(nn.Layer):
dilation=dilation, dilation=dilation,
rectify_avg=rectify_avg, rectify_avg=rectify_avg,
last_gamma=last_gamma, last_gamma=last_gamma,
name=name)) name=curr_name))
self.bottleneck_block_list.append(bottleneck_func) self.bottleneck_block_list.append(bottleneck_func)
def forward(self, x): def forward(self, x):
......
...@@ -23,7 +23,7 @@ from paddle.nn.functional import swish ...@@ -23,7 +23,7 @@ from paddle.nn.functional import swish
__all__ = [ __all__ = [
"ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5",
"ShuffleNetV2", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0",
"ShuffleNetV2_swish" "ShuffleNetV2_swish"
] ]
...@@ -299,7 +299,7 @@ def ShuffleNetV2_x0_5(**args): ...@@ -299,7 +299,7 @@ def ShuffleNetV2_x0_5(**args):
return model return model
def ShuffleNetV2(**args): def ShuffleNetV2_x1_0(**args):
model = ShuffleNet(scale=1.0, **args) model = ShuffleNet(scale=1.0, **args)
return model return model
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册