Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
032230c6
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
032230c6
编写于
9月 03, 2020
作者:
D
dyning
提交者:
GitHub
9月 03, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #261 from littletomatodonkey/dyg/opt_code
improve dygraph model
上级
26289ce0
b17fbac3
变更
27
隐藏空白更改
内联
并排
Showing
27 changed file
with
142 addition
and
410 deletion
+142
-410
ppcls/modeling/architectures/__init__.py
ppcls/modeling/architectures/__init__.py
+3
-1
ppcls/modeling/architectures/densenet.py
ppcls/modeling/architectures/densenet.py
+0
-1
ppcls/modeling/architectures/dpn.py
ppcls/modeling/architectures/dpn.py
+0
-1
ppcls/modeling/architectures/efficientnet.py
ppcls/modeling/architectures/efficientnet.py
+7
-11
ppcls/modeling/architectures/googlenet.py
ppcls/modeling/architectures/googlenet.py
+5
-6
ppcls/modeling/architectures/hrnet.py
ppcls/modeling/architectures/hrnet.py
+1
-3
ppcls/modeling/architectures/mobilenet_v1.py
ppcls/modeling/architectures/mobilenet_v1.py
+0
-1
ppcls/modeling/architectures/mobilenet_v2.py
ppcls/modeling/architectures/mobilenet_v2.py
+0
-1
ppcls/modeling/architectures/mobilenet_v3.py
ppcls/modeling/architectures/mobilenet_v3.py
+0
-1
ppcls/modeling/architectures/res2net.py
ppcls/modeling/architectures/res2net.py
+2
-4
ppcls/modeling/architectures/res2net_vd.py
ppcls/modeling/architectures/res2net_vd.py
+7
-5
ppcls/modeling/architectures/resnet.py
ppcls/modeling/architectures/resnet.py
+4
-9
ppcls/modeling/architectures/resnet_name.py
ppcls/modeling/architectures/resnet_name.py
+0
-213
ppcls/modeling/architectures/resnet_vc.py
ppcls/modeling/architectures/resnet_vc.py
+4
-9
ppcls/modeling/architectures/resnet_vd.py
ppcls/modeling/architectures/resnet_vd.py
+4
-9
ppcls/modeling/architectures/resnext.py
ppcls/modeling/architectures/resnext.py
+2
-5
ppcls/modeling/architectures/resnext_vd.py
ppcls/modeling/architectures/resnext_vd.py
+7
-6
ppcls/modeling/architectures/se_resnet_vd.py
ppcls/modeling/architectures/se_resnet_vd.py
+4
-9
ppcls/modeling/architectures/se_resnext_vd.py
ppcls/modeling/architectures/se_resnext_vd.py
+2
-5
ppcls/modeling/architectures/shufflenet_v2.py
ppcls/modeling/architectures/shufflenet_v2.py
+0
-1
ppcls/modeling/architectures/xception.py
ppcls/modeling/architectures/xception.py
+9
-14
ppcls/modeling/architectures/xception_deeplab.py
ppcls/modeling/architectures/xception_deeplab.py
+3
-5
ppcls/utils/check.py
ppcls/utils/check.py
+2
-2
ppcls/utils/config.py
ppcls/utils/config.py
+10
-4
ppcls/utils/save_load.py
ppcls/utils/save_load.py
+37
-15
tools/program.py
tools/program.py
+27
-68
tools/run.sh
tools/run.sh
+2
-1
未找到文件。
ppcls/modeling/architectures/__init__.py
浏览文件 @
032230c6
...
...
@@ -24,9 +24,11 @@ from .se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet15
from
.dpn
import
DPN68
from
.densenet
import
DenseNet121
from
.hrnet
import
HRNet_W18_C
from
.efficientnet
import
EfficientNetB0
from
.googlenet
import
GoogLeNet
from
.mobilenet_v1
import
MobileNetV1_x0_25
,
MobileNetV1_x0_5
,
MobileNetV1_x0_75
,
MobileNetV1
from
.mobilenet_v2
import
MobileNetV2_x0_25
,
MobileNetV2_x0_5
,
MobileNetV2_x0_75
,
MobileNetV2
,
MobileNetV2_x1_5
,
MobileNetV2_x2_0
from
.mobilenet_v3
import
MobileNetV3_small_x0_35
,
MobileNetV3_small_x0_5
,
MobileNetV3_small_x0_75
,
MobileNetV3_small_x1_0
,
MobileNetV3_small_x1_25
,
MobileNetV3_large_x0_35
,
MobileNetV3_large_x0_5
,
MobileNetV3_large_x0_75
,
MobileNetV3_large_x1_0
,
MobileNetV3_large_x1_25
from
.shufflenet_v2
import
ShuffleNetV2_x0_25
,
ShuffleNetV2_x0_33
,
ShuffleNetV2_x0_5
,
ShuffleNetV2
,
ShuffleNetV2_x1_5
,
ShuffleNetV2_x2_0
,
ShuffleNetV2_swish
from
.distillation_models
import
ResNet50_vd_distill_MobileNetV3_large_x1_0
\ No newline at end of file
from
.distillation_models
import
ResNet50_vd_distill_MobileNetV3_large_x1_0
ppcls/modeling/architectures/densenet.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
ppcls/modeling/architectures/dpn.py
浏览文件 @
032230c6
...
...
@@ -21,7 +21,6 @@ import sys
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
...
...
ppcls/modeling/architectures/efficientnet.py
浏览文件 @
032230c6
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
import
collections
...
...
@@ -491,6 +490,7 @@ class SEBlock(fluid.dygraph.Layer):
num_squeezed_channels
,
oup
,
1
,
act
=
"sigmoid"
,
use_bias
=
True
,
padding_type
=
padding_type
,
name
=
name
+
"_se_expand"
)
...
...
@@ -499,8 +499,6 @@ class SEBlock(fluid.dygraph.Layer):
x
=
self
.
_pool
(
inputs
)
x
=
self
.
_conv1
(
x
)
x
=
self
.
_conv2
(
x
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'sigmoid'
)
x
=
layer_helper
.
append_activation
(
x
)
return
fluid
.
layers
.
elementwise_mul
(
inputs
,
x
)
...
...
@@ -565,18 +563,17 @@ class MbConvBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
x
=
inputs
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'swish'
)
if
self
.
expand_ratio
!=
1
:
x
=
self
.
_ecn
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
swish
(
x
)
x
=
self
.
_dcn
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
swish
(
x
)
if
self
.
has_se
:
x
=
self
.
_se
(
x
)
x
=
self
.
_pcn
(
x
)
if
self
.
id_skip
and
\
self
.
block_args
.
stride
==
1
and
\
self
.
block_args
.
input_filters
==
self
.
block_args
.
output_filters
:
self
.
block_args
.
stride
==
1
and
\
self
.
block_args
.
input_filters
==
self
.
block_args
.
output_filters
:
if
self
.
drop_connect_rate
:
x
=
_drop_connect
(
x
,
self
.
drop_connect_rate
,
self
.
is_test
)
x
=
fluid
.
layers
.
elementwise_add
(
x
,
inputs
)
...
...
@@ -697,8 +694,7 @@ class ExtractFeatures(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
x
=
self
.
_conv_stem
(
inputs
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'swish'
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
swish
(
x
)
for
_mc_block
in
self
.
conv_seq
:
x
=
_mc_block
(
x
)
return
x
...
...
@@ -914,4 +910,4 @@ def EfficientNetB7(is_test=False,
override_params
=
override_params
,
use_se
=
use_se
,
**
args
)
return
model
\ No newline at end of file
return
model
ppcls/modeling/architectures/googlenet.py
浏览文件 @
032230c6
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
__all__
=
[
'GoogLeNet_DY'
]
__all__
=
[
'GoogLeNet'
]
def
xavier
(
channels
,
filter_size
,
name
):
stdv
=
(
3.0
/
(
filter_size
**
2
*
channels
))
**
0.5
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_weights"
)
return
param_attr
...
...
@@ -90,8 +89,8 @@ class Inception(fluid.dygraph.Layer):
convprj
=
self
.
_convprj
(
pool
)
cat
=
fluid
.
layers
.
concat
([
conv1
,
conv3
,
conv5
,
convprj
],
axis
=
1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
return
layer_helper
.
append_activation
(
cat
)
cat
=
fluid
.
layers
.
relu
(
cat
)
return
cat
class
GoogleNetDY
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -205,4 +204,4 @@ class GoogleNetDY(fluid.dygraph.Layer):
def
GoogLeNet
(
**
args
):
model
=
GoogleNetDY
(
**
args
)
return
model
\ No newline at end of file
return
model
ppcls/modeling/architectures/hrnet.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
...
...
@@ -495,8 +494,7 @@ class FuseLayers(fluid.dygraph.Layer):
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
residual
=
layer_helper
.
append_activation
(
residual
)
residual
=
fluid
.
layers
.
relu
(
residual
)
outs
.
append
(
residual
)
return
outs
...
...
ppcls/modeling/architectures/mobilenet_v1.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.fluid.initializer
import
MSRA
import
math
...
...
ppcls/modeling/architectures/mobilenet_v2.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
ppcls/modeling/architectures/mobilenet_v3.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
ppcls/modeling/architectures/res2net.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -143,9 +142,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
Res2Net
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/res2net_vd.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -47,7 +46,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
...
...
@@ -150,9 +153,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
Res2Net_vd
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnet.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -118,10 +117,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
"relu"
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -165,10 +162,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
"relu"
)
return
y
class
ResNet
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnet_name.py
已删除
100644 → 0
浏览文件 @
26289ce0
import
numpy
as
np
import
argparse
import
ast
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid
import
framework
import
math
import
sys
import
time
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
name
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1"
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
4
*
1
*
1
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_output
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_0.w_0"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0.b_0"
))
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
y
=
self
.
out
(
y
)
return
y
def
ResNet50
(
**
args
):
model
=
ResNet
(
layers
=
50
,
**
args
)
return
model
def
ResNet101
(
**
args
):
model
=
ResNet
(
layers
=
101
,
**
args
)
return
model
def
ResNet152
(
**
args
):
model
=
ResNet
(
layers
=
152
,
**
args
)
return
model
if
__name__
==
"__main__"
:
import
numpy
as
np
place
=
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
model
=
ResNet50
()
img
=
np
.
random
.
uniform
(
0
,
255
,
[
1
,
3
,
224
,
224
]).
astype
(
'float32'
)
img
=
fluid
.
dygraph
.
to_variable
(
img
)
res
=
model
(
img
)
print
(
res
.
shape
)
ppcls/modeling/architectures/resnet_vc.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -120,10 +119,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -167,10 +164,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
return
y
class
ResNet_vc
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnet_vd.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -130,10 +129,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -179,10 +176,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
return
y
class
ResNet_vd
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnext.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -122,10 +121,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
ResNeXt
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnext_vd.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -46,7 +45,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
...
...
@@ -131,10 +134,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
ResNeXt
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/se_resnet_vd.py
浏览文件 @
032230c6
...
...
@@ -19,7 +19,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -137,10 +136,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -194,10 +191,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
SELayer
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/se_resnext_vd.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -131,10 +130,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
SELayer
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/shufflenet_v2.py
浏览文件 @
032230c6
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.fluid.initializer
import
MSRA
import
math
...
...
ppcls/modeling/architectures/xception.py
浏览文件 @
032230c6
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
...
...
@@ -99,11 +98,10 @@ class EntryFlowBottleneckBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
conv0
=
inputs
short
=
self
.
_short
(
inputs
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
if
self
.
relu_first
:
conv0
=
layer_helper
.
append_activation
(
conv0
)
conv0
=
fluid
.
layers
.
relu
(
conv0
)
conv1
=
self
.
_conv1
(
conv0
)
conv2
=
layer_helper
.
append_activation
(
conv1
)
conv2
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv2
(
conv2
)
pool
=
self
.
_pool
(
conv2
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
pool
)
...
...
@@ -177,12 +175,11 @@ class MiddleFlowBottleneckBlock(fluid.dygraph.Layer):
name
=
name
+
"_branch2c_weights"
)
def
forward
(
self
,
inputs
):
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
conv0
=
layer_helper
.
append_activation
(
inputs
)
conv0
=
fluid
.
layers
.
relu
(
inputs
)
conv0
=
self
.
_conv_0
(
conv0
)
conv1
=
layer_helper
.
append_activation
(
conv0
)
conv1
=
fluid
.
layers
.
relu
(
conv0
)
conv1
=
self
.
_conv_1
(
conv1
)
conv2
=
layer_helper
.
append_activation
(
conv1
)
conv2
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv_2
(
conv2
)
return
fluid
.
layers
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
)
...
...
@@ -276,10 +273,9 @@ class ExitFlowBottleneckBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
short
=
self
.
_short
(
inputs
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
conv0
=
layer_helper
.
append_activation
(
inputs
)
conv0
=
fluid
.
layers
.
relu
(
inputs
)
conv1
=
self
.
_conv_1
(
conv0
)
conv2
=
layer_helper
.
append_activation
(
conv1
)
conv2
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv_2
(
conv2
)
pool
=
self
.
_pool
(
conv2
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
pool
)
...
...
@@ -306,12 +302,11 @@ class ExitFlow(fluid.dygraph.Layer):
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
inputs
):
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
conv0
=
self
.
_conv_0
(
inputs
)
conv1
=
self
.
_conv_1
(
conv0
)
conv1
=
layer_helper
.
append_activation
(
conv1
)
conv1
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv_2
(
conv1
)
conv2
=
layer_helper
.
append_activation
(
conv2
)
conv2
=
fluid
.
layers
.
relu
(
conv2
)
pool
=
self
.
_pool
(
conv2
)
pool
=
fluid
.
layers
.
reshape
(
pool
,
[
0
,
-
1
])
out
=
self
.
_out
(
pool
)
...
...
ppcls/modeling/architectures/xception_deeplab.py
浏览文件 @
032230c6
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
__all__
=
[
"Xception41_deeplab"
,
"Xception65_deeplab"
,
"Xception71_deeplab"
]
...
...
@@ -226,13 +225,12 @@ class Xception_Block(fluid.dygraph.Layer):
name
=
name
+
"/shortcut"
)
def
forward
(
self
,
inputs
):
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
if
not
self
.
activation_fn_in_separable_conv
:
x
=
layer_helper
.
append_activation
(
inputs
)
x
=
fluid
.
layers
.
relu
(
inputs
)
x
=
self
.
_conv1
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
self
.
_conv2
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
self
.
_conv3
(
x
)
else
:
x
=
self
.
_conv1
(
inputs
)
...
...
ppcls/utils/check.py
浏览文件 @
032230c6
...
...
@@ -31,12 +31,12 @@ def check_version():
Log error and exit when the installed version of paddlepaddle is
not satisfied.
"""
err
=
"PaddlePaddle version
2.0
.0 or higher is required, "
\
err
=
"PaddlePaddle version
1.8
.0 or higher is required, "
\
"or a suitable develop version is satisfied as well.
\n
"
\
"Please make sure the version is good with your code."
\
try
:
fluid
.
require_version
(
'
2.0
.0'
)
fluid
.
require_version
(
'
1.8
.0'
)
except
Exception
:
logger
.
error
(
err
)
sys
.
exit
(
1
)
...
...
ppcls/utils/config.py
浏览文件 @
032230c6
...
...
@@ -64,14 +64,18 @@ def print_dict(d, delimiter=0):
placeholder
=
"-"
*
60
for
k
,
v
in
sorted
(
d
.
items
()):
if
isinstance
(
v
,
dict
):
logger
.
info
(
"{}{} : "
.
format
(
delimiter
*
" "
,
logger
.
coloring
(
k
,
"HEADER"
)))
logger
.
info
(
"{}{} : "
.
format
(
delimiter
*
" "
,
logger
.
coloring
(
k
,
"HEADER"
)))
print_dict
(
v
,
delimiter
+
4
)
elif
isinstance
(
v
,
list
)
and
len
(
v
)
>=
1
and
isinstance
(
v
[
0
],
dict
):
logger
.
info
(
"{}{} : "
.
format
(
delimiter
*
" "
,
logger
.
coloring
(
str
(
k
),
"HEADER"
)))
logger
.
info
(
"{}{} : "
.
format
(
delimiter
*
" "
,
logger
.
coloring
(
str
(
k
),
"HEADER"
)))
for
value
in
v
:
print_dict
(
value
,
delimiter
+
4
)
else
:
logger
.
info
(
"{}{} : {}"
.
format
(
delimiter
*
" "
,
logger
.
coloring
(
k
,
"HEADER"
),
logger
.
coloring
(
v
,
"OKGREEN"
)))
logger
.
info
(
"{}{} : {}"
.
format
(
delimiter
*
" "
,
logger
.
coloring
(
k
,
"HEADER"
),
logger
.
coloring
(
v
,
"OKGREEN"
)))
if
k
.
isupper
():
logger
.
info
(
placeholder
)
...
...
@@ -138,7 +142,9 @@ def override(dl, ks, v):
override
(
dl
[
k
],
ks
[
1
:],
v
)
else
:
if
len
(
ks
)
==
1
:
assert
ks
[
0
]
in
dl
,
(
'{} is not exist in {}'
.
format
(
ks
[
0
],
dl
))
# assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
if
not
ks
[
0
]
in
dl
:
logger
.
warning
(
'A new filed ({}) detected!'
.
format
(
ks
[
0
],
dl
))
dl
[
ks
[
0
]]
=
str2num
(
v
)
else
:
override
(
dl
[
ks
[
0
]],
ks
[
1
:],
v
)
...
...
ppcls/utils/save_load.py
浏览文件 @
032230c6
...
...
@@ -45,10 +45,7 @@ def _mkdir_if_not_exist(path):
raise
OSError
(
'Failed to mkdir {}'
.
format
(
path
))
def
load_dygraph_pretrain
(
model
,
path
=
None
,
load_static_weights
=
False
,
):
def
load_dygraph_pretrain
(
model
,
path
=
None
,
load_static_weights
=
False
):
if
not
(
os
.
path
.
isdir
(
path
)
or
os
.
path
.
exists
(
path
+
'.pdparams'
)):
raise
ValueError
(
"Model pretrain path {} does not "
"exists."
.
format
(
path
))
...
...
@@ -72,6 +69,32 @@ def load_dygraph_pretrain(
return
def
load_distillation_model
(
model
,
pretrained_model
,
load_static_weights
):
logger
.
info
(
"In distillation mode, teacher model will be "
"loaded firstly before student model."
)
assert
len
(
pretrained_model
)
==
2
,
"pretrained_model length should be 2 but got {}"
.
format
(
len
(
pretrained_model
))
assert
len
(
load_static_weights
)
==
2
,
"load_static_weights length should be 2 but got {}"
.
format
(
len
(
load_static_weights
))
load_dygraph_pretrain
(
model
.
teacher
,
path
=
pretrained_model
[
0
],
load_static_weights
=
load_static_weights
[
0
])
logger
.
info
(
logger
.
coloring
(
"Finish initing teacher model from {}"
.
format
(
pretrained_model
),
"HEADER"
))
load_dygraph_pretrain
(
model
.
student
,
path
=
pretrained_model
[
1
],
load_static_weights
=
load_static_weights
[
1
])
logger
.
info
(
logger
.
coloring
(
"Finish initing student model from {}"
.
format
(
pretrained_model
),
"HEADER"
))
def
init_model
(
config
,
net
,
optimizer
=
None
):
"""
load model from checkpoint or pretrained_model
...
...
@@ -94,18 +117,17 @@ def init_model(config, net, optimizer=None):
load_static_weights
=
config
.
get
(
'load_static_weights'
,
False
)
use_distillation
=
config
.
get
(
'use_distillation'
,
False
)
if
pretrained_model
:
if
not
isinstance
(
pretrained_model
,
list
):
pretrained_model
=
[
pretrained_model
]
if
not
isinstance
(
load_static_weights
,
list
):
load_static_weights
=
[
load_static_weights
]
*
len
(
pretrained_model
)
for
idx
,
pretrained
in
enumerate
(
pretrained_model
):
load_static
=
load_static_weights
[
idx
]
model
=
net
if
use_distillation
and
not
load_static
:
model
=
net
.
teacher
if
isinstance
(
pretrained_model
,
list
):
# load distillation pretrained model
if
not
isinstance
(
load_static_weights
,
list
):
load_static_weights
=
[
load_static_weights
]
*
len
(
pretrained_model
)
load_distillation_model
(
net
,
pretrained_model
,
load_static_weights
)
else
:
# common load
load_dygraph_pretrain
(
model
,
path
=
pretrained
,
load_static_weights
=
load_static
)
net
,
path
=
pretrained_model
,
load_static_weights
=
load_static_weights
)
logger
.
info
(
logger
.
coloring
(
"Finish initing model from {}"
.
format
(
pretrained_model
),
"HEADER"
))
...
...
tools/program.py
浏览文件 @
032230c6
...
...
@@ -35,8 +35,6 @@ from ppcls.utils.misc import AverageMeter
from
ppcls.utils
import
logger
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.incubate.fleet.collective
import
fleet
from
paddle.fluid.incubate.fleet.collective
import
DistributedStrategy
def
create_dataloader
():
...
...
@@ -243,43 +241,6 @@ def create_optimizer(config, parameter_list=None):
return
opt
(
lr
,
parameter_list
)
def
dist_optimizer
(
config
,
optimizer
):
"""
Create a distributed optimizer based on a normal optimizer
Args:
config(dict):
optimizer(): a normal optimizer
Returns:
optimizer: a distributed optimizer
"""
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
num_threads
=
3
exec_strategy
.
num_iteration_per_drop_scope
=
10
dist_strategy
=
DistributedStrategy
()
dist_strategy
.
nccl_comm_num
=
1
dist_strategy
.
fuse_all_reduce_ops
=
True
dist_strategy
.
exec_strategy
=
exec_strategy
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
dist_strategy
)
return
optimizer
def
mixed_precision_optimizer
(
config
,
optimizer
):
use_fp16
=
config
.
get
(
'use_fp16'
,
False
)
amp_scale_loss
=
config
.
get
(
'amp_scale_loss'
,
1.0
)
use_dynamic_loss_scaling
=
config
.
get
(
'use_dynamic_loss_scaling'
,
False
)
if
use_fp16
:
optimizer
=
fluid
.
contrib
.
mixed_precision
.
decorate
(
optimizer
,
init_loss_scaling
=
amp_scale_loss
,
use_dynamic_loss_scaling
=
use_dynamic_loss_scaling
)
return
optimizer
def
create_feeds
(
batch
,
use_mix
):
image
=
batch
[
0
]
if
use_mix
:
...
...
@@ -307,26 +268,22 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
Returns:
"""
print_interval
=
config
.
get
(
"print_interval"
,
10
)
use_mix
=
config
.
get
(
"use_mix"
,
False
)
and
mode
==
"train"
if
use_mix
:
metric_list
=
OrderedDict
(
[
(
"loss"
,
AverageMeter
(
'loss'
,
'7.4f'
)),
(
"lr"
,
AverageMeter
(
'lr'
,
'f'
,
need_avg
=
False
)),
(
"batch_time"
,
AverageMeter
(
'elapse'
,
'.3f'
)),
(
'reader_time'
,
AverageMeter
(
'reader'
,
'.3f'
)),
])
else
:
metric_list
=
[
(
"loss"
,
AverageMeter
(
'loss'
,
'7.4f'
)),
(
"lr"
,
AverageMeter
(
'lr'
,
'f'
,
need_avg
=
False
)),
(
"batch_time"
,
AverageMeter
(
'elapse'
,
'.3f'
)),
(
'reader_time'
,
AverageMeter
(
'reader'
,
'.3f'
)),
]
if
not
use_mix
:
topk_name
=
'top{}'
.
format
(
config
.
topk
)
metric_list
=
OrderedDict
([
(
"loss"
,
AverageMeter
(
'loss'
,
'7.4f'
)),
(
"top1"
,
AverageMeter
(
'top1'
,
'.4f'
)),
(
topk_name
,
AverageMeter
(
topk_name
,
'.4f'
)),
(
"lr"
,
AverageMeter
(
'lr'
,
'f'
,
need_avg
=
False
)),
(
"batch_time"
,
AverageMeter
(
'elapse'
,
'.3f'
)),
(
'reader_time'
,
AverageMeter
(
'reader'
,
'.3f'
)),
])
metric_list
.
insert
(
1
,
(
topk_name
,
AverageMeter
(
topk_name
,
'.4f'
)))
metric_list
.
insert
(
1
,
(
"top1"
,
AverageMeter
(
"top1"
,
'.4f'
)))
metric_list
=
OrderedDict
(
metric_list
)
tic
=
time
.
time
()
for
idx
,
batch
in
enumerate
(
dataloader
()):
...
...
@@ -354,17 +311,19 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
tic
=
time
.
time
()
fetchs_str
=
' '
.
join
([
str
(
m
.
value
)
for
m
in
metric_list
.
values
()])
if
mode
==
'eval'
:
logger
.
info
(
"{:s} step:{:<4d} {:s}s"
.
format
(
mode
,
idx
,
fetchs_str
))
else
:
epoch_str
=
"epoch:{:<3d}"
.
format
(
epoch
)
step_str
=
"{:s} step:{:<4d}"
.
format
(
mode
,
idx
)
logger
.
info
(
"{:s} {:s} {:s}s"
.
format
(
logger
.
coloring
(
epoch_str
,
"HEADER"
)
if
idx
==
0
else
epoch_str
,
logger
.
coloring
(
step_str
,
"PURPLE"
),
logger
.
coloring
(
fetchs_str
,
'OKGREEN'
)))
if
idx
%
print_interval
==
0
:
if
mode
==
'eval'
:
logger
.
info
(
"{:s} step:{:<4d} {:s}s"
.
format
(
mode
,
idx
,
fetchs_str
))
else
:
epoch_str
=
"epoch:{:<3d}"
.
format
(
epoch
)
step_str
=
"{:s} step:{:<4d}"
.
format
(
mode
,
idx
)
logger
.
info
(
"{:s} {:s} {:s}s"
.
format
(
logger
.
coloring
(
epoch_str
,
"HEADER"
)
if
idx
==
0
else
epoch_str
,
logger
.
coloring
(
step_str
,
"PURPLE"
),
logger
.
coloring
(
fetchs_str
,
'OKGREEN'
)))
end_str
=
' '
.
join
([
str
(
m
.
mean
)
for
m
in
metric_list
.
values
()]
+
[
metric_list
[
'batch_time'
].
total
])
...
...
tools/run.sh
浏览文件 @
032230c6
...
...
@@ -5,4 +5,5 @@ export PYTHONPATH=$PWD:$PYTHONPATH
python
-m
paddle.distributed.launch
\
--selected_gpus
=
"0,1,2,3"
\
tools/train.py
\
-c
./configs/ResNet/ResNet50.yaml
-c
./configs/ResNet/ResNet50.yaml
\
-o
print_interval
=
10
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录