ResNet50_vd_multilabel.yaml 1.8 KB
Newer Older
Y
yaohai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
mode: 'train'
ARCHITECTURE:
    name: 'ResNet50_vd'

pretrained_model: "./pretrained/ResNet50_vd_pretrained"
model_save_dir: "./output/"
classes_num: 33
total_images: 17463
save_interval: 1
validate: True
valid_interval: 1
epochs: 10
topk: 1
image_shape: [3, 224, 224]

multilabel: True

use_mix: False
ls_epsilon: 0.1

LEARNING_RATE:
    function: 'Cosine'          
    params:                   
        lr: 0.07           

OPTIMIZER:
    function: 'Momentum'
    params:
        momentum: 0.9
    regularizer:
        function: 'L2'
        factor: 0.000070

TRAIN:
    batch_size: 256
    num_workers: 4
Y
yaohai 已提交
37 38
    file_list: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_train_list.txt"
    data_dir: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images"
Y
yaohai 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    shuffle_seed: 0
    transforms:
        - DecodeImage:
            to_rgb: True
            to_np: False
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1./255.
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - ToCHWImage:
    mix:                       
        - MixupOperator:    
            alpha: 0.2      

VALID:
    batch_size: 64
    num_workers: 4
Y
yaohai 已提交
62 63
    file_list: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_test_list.txt"
    data_dir: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images"
Y
yaohai 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    shuffle_seed: 0
    transforms:
        - DecodeImage:
            to_rgb: True
            to_np: False
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - ToCHWImage: