interface.py 7.4 KB
Newer Older
F
Felix 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Felix 已提交
15 16 17 18 19 20 21 22 23 24
import ctypes
import paddle
import numpy.ctypeslib as ctl
import numpy as np
import os
import json

from ctypes import *
from numpy.ctypeslib import ndpointer

F
Felix 已提交
25 26 27
__dir__ = os.path.dirname(os.path.abspath(__file__))
so_path = os.path.join(__dir__, "index.so")
lib = ctypes.cdll.LoadLibrary(so_path)
F
Felix 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

class IndexContext(Structure):
    _fields_=[("graph",c_void_p),
              ("data",c_void_p)]

# for mobius IP index
build_mobius_index = lib.build_mobius_index
build_mobius_index.restype = None
build_mobius_index.argtypes = [ctl.ndpointer(np.float32, flags='aligned, c_contiguous'), ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_double, ctypes.c_char_p]

search_mobius_index = lib.search_mobius_index
search_mobius_index.restype = None
search_mobius_index.argtypes = [ctl.ndpointer(np.float32, flags='aligned, c_contiguous'), ctypes.c_int, ctypes.c_int,ctypes.c_int,POINTER(IndexContext),ctl.ndpointer(np.uint64, flags='aligned, c_contiguous'),ctl.ndpointer(np.float64, flags='aligned, c_contiguous')]

load_mobius_index_prefix = lib.load_mobius_index_prefix
load_mobius_index_prefix.restype = None
load_mobius_index_prefix.argtypes = [ctypes.c_int, ctypes.c_int, POINTER(IndexContext), ctypes.c_char_p]

save_mobius_index_prefix = lib.save_mobius_index_prefix
save_mobius_index_prefix.restype = None
save_mobius_index_prefix.argtypes = [POINTER(IndexContext), ctypes.c_char_p]


# for L2 index
build_l2_index = lib.build_l2_index
build_l2_index.restype = None
build_l2_index.argtypes = [ctl.ndpointer(np.float32, flags='aligned, c_contiguous'), ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_char_p]

search_l2_index = lib.search_l2_index
search_l2_index.restype = None
search_l2_index.argtypes = [ctl.ndpointer(np.float32, flags='aligned, c_contiguous'), ctypes.c_int, ctypes.c_int,ctypes.c_int,POINTER(IndexContext),ctl.ndpointer(np.uint64, flags='aligned, c_contiguous'),ctl.ndpointer(np.float64, flags='aligned, c_contiguous')]

load_l2_index_prefix = lib.load_l2_index_prefix
load_l2_index_prefix.restype = None
load_l2_index_prefix.argtypes = [ctypes.c_int, ctypes.c_int, POINTER(IndexContext), ctypes.c_char_p]

save_l2_index_prefix = lib.save_l2_index_prefix
save_l2_index_prefix.restype = None
save_l2_index_prefix.argtypes = [POINTER(IndexContext), ctypes.c_char_p]

release_context = lib.release_context
release_context.restype = None
release_context.argtypes = [POINTER(IndexContext)]



class Graph_Index(object):
    """
        graph index
    """
    def __init__(self, dist_type="IP"):
        self.dim = 0
        self.total_num = 0
        self.dist_type = dist_type
        self.mobius_pow = 2.0
        self.index_context = IndexContext(0,0)
        self.gallery_doc_dict = {}
        self.with_attr = False
        assert dist_type in ["IP", "L2"], "Only support IP and L2 distance ..."
    
    def build(self, gallery_vectors, gallery_docs=[], pq_size=100, index_path='graph_index/'):
        """
        build index 
        """
        if paddle.is_tensor(gallery_vectors):
              gallery_vectors = gallery_vectors.numpy()
        assert gallery_vectors.ndim == 2, "Input vector must be 2D ..."
        
        self.total_num = gallery_vectors.shape[0]
        self.dim = gallery_vectors.shape[1]

        assert (len(gallery_docs) == self.total_num if len(gallery_docs)>0 else True)
 
        print("training index -> num: {}, dim: {}, dist_type: {}".format(self.total_num, self.dim, self.dist_type))

        if not os.path.exists(index_path):
            os.makedirs(index_path)
 
        if self.dist_type == "IP":
            build_mobius_index(gallery_vectors,self.total_num,self.dim, pq_size, self.mobius_pow, create_string_buffer((index_path+"/index").encode('utf-8')))
            load_mobius_index_prefix(self.total_num, self.dim, ctypes.byref(self.index_context), create_string_buffer((index_path+"/index").encode('utf-8')))
        else:
            build_l2_index(gallery_vectors,self.total_num,self.dim, pq_size, create_string_buffer((index_path+"/index").encode('utf-8')))
            load_l2_index_prefix(self.total_num, self.dim, ctypes.byref(self.index_context), create_string_buffer((index_path+"/index").encode('utf-8')))
        
        self.gallery_doc_dict = {}       
        if len(gallery_docs) > 0:
            self.with_attr = True
            for i in range(gallery_vectors.shape[0]):
                self.gallery_doc_dict[str(i)] = gallery_docs[i] 

        self.gallery_doc_dict["total_num"] = self.total_num
        self.gallery_doc_dict["dim"] = self.dim
        self.gallery_doc_dict["dist_type"] = self.dist_type
        self.gallery_doc_dict["with_attr"] = self.with_attr

        with open(index_path + "/info.json", "w") as f:
            json.dump(self.gallery_doc_dict, f)

        print("finished creating index ...")

    def search(self, query, return_k=10, search_budget=100):
        """
        search
        """
        ret_id = np.zeros(return_k, dtype=np.uint64)
        ret_score = np.zeros(return_k, dtype=np.float64)

        if paddle.is_tensor(query):
              query = query.numpy()
        if self.dist_type == "IP":
            search_mobius_index(query,self.dim,search_budget,return_k,ctypes.byref(self.index_context),ret_id,ret_score)
        else:
            search_l2_index(query,self.dim,search_budget,return_k,ctypes.byref(self.index_context),ret_id,ret_score)
         
        ret_id = ret_id.tolist()
        ret_doc = []
        if self.with_attr: 
            for i in range(return_k):
                ret_doc.append(self.gallery_doc_dict[str(ret_id[i])])
            return ret_score, ret_doc
        else:
            return ret_score, ret_id

    def dump(self, index_path):

        if not os.path.exists(index_path):
            os.makedirs(index_path)

        if self.dist_type == "IP":
            save_mobius_index_prefix(ctypes.byref(self.index_context),create_string_buffer((index_path+"/index").encode('utf-8')))
        else:
            save_l2_index_prefix(ctypes.byref(self.index_context), create_string_buffer((index_path+"/index").encode('utf-8')))
        
        with open(index_path + "/info.json", "w") as f:
            json.dump(self.gallery_doc_dict, f)

    def load(self, index_path):
        self.gallery_doc_dict = {}
        
        with open(index_path + "/info.json", "r") as f:
            self.gallery_doc_dict = json.load(f)
        
        self.total_num = self.gallery_doc_dict["total_num"]
        self.dim = self.gallery_doc_dict["dim"]
        self.dist_type = self.gallery_doc_dict["dist_type"]    
        self.with_attr = self.gallery_doc_dict["with_attr"]

        if self.dist_type == "IP":
            load_mobius_index_prefix(self.total_num,self.dim,ctypes.byref(self.index_context), create_string_buffer((index_path+"/index").encode('utf-8')))
        else:
            load_l2_index_prefix(self.total_num,self.dim,ctypes.byref(self.index_context), create_string_buffer((index_path+"/index").encode('utf-8')))