object_detector.cc 12.0 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/object_detector.h"

namespace PPShiTu {

// Load Model and create model predictor
void ObjectDetector::LoadModel(std::string model_file, int num_theads) {
  MobileConfig config;
  config.set_threads(num_theads);
  config.set_model_from_file(model_file);
  config.set_power_mode(LITE_POWER_HIGH);

  predictor_ = CreatePaddlePredictor<MobileConfig>(config);
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<PPShiTu::ObjectResult>& results,
                        const std::vector<std::string>& lables,
                        const std::vector<int>& colormap,
                        const bool is_rbox = false) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    // Configure color and text size
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lables[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size =
        cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
    cv::Point origin;

    if (is_rbox) {
      // Draw object, text, and background
      for (int k = 0; k < 4; k++) {
        cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8],
                                  results[i].rect[(k * 2 + 1) % 8]);
        cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8],
                                  results[i].rect[(k * 2 + 3) % 8]);
        cv::line(vis_img, pt1, pt2, roi_color, 2);
      }
    } else {
      int w = results[i].rect[2] - results[i].rect[0];
      int h = results[i].rect[3] - results[i].rect[1];
      cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h);
      // Draw roi object, text, and background
      cv::rectangle(vis_img, roi, roi_color, 2);
    }

    origin.x = results[i].rect[0];
    origin.y = results[i].rect[1];

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[1] - text_size.height,
                                  text_size.width,
                                  text_size.height);
    // Draw text, and background
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
                font_scale,
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
98
  // cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
D
dongshuilong 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(const std::vector<cv::Mat> mats,
                                 std::vector<PPShiTu::ObjectResult>* result,
                                 std::vector<int> bbox_num,
                                 bool is_rbox = false) {
  result->clear();
  int start_idx = 0;
  for (int im_id = 0; im_id < mats.size(); im_id++) {
    cv::Mat raw_mat = mats[im_id];
    int rh = 1;
    int rw = 1;
    if (config_.arch_ == "Face") {
      rh = raw_mat.rows;
      rw = raw_mat.cols;
    }
    for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) {
      if (is_rbox) {
        // Class id
        int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
        // Confidence score
        float score = output_data_[1 + j * 10];
        int x1 = (output_data_[2 + j * 10] * rw);
        int y1 = (output_data_[3 + j * 10] * rh);
        int x2 = (output_data_[4 + j * 10] * rw);
        int y2 = (output_data_[5 + j * 10] * rh);
        int x3 = (output_data_[6 + j * 10] * rw);
        int y3 = (output_data_[7 + j * 10] * rh);
        int x4 = (output_data_[8 + j * 10] * rw);
        int y4 = (output_data_[9 + j * 10] * rh);

        PPShiTu::ObjectResult result_item;
        result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
        result_item.class_id = class_id;
        result_item.confidence = score;
        result->push_back(result_item);
      } else {
        // Class id
        int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
        // Confidence score
        float score = output_data_[1 + j * 6];
        int xmin = (output_data_[2 + j * 6] * rw);
        int ymin = (output_data_[3 + j * 6] * rh);
        int xmax = (output_data_[4 + j * 6] * rw);
        int ymax = (output_data_[5 + j * 6] * rh);
        int wd = xmax - xmin;
        int hd = ymax - ymin;

        PPShiTu::ObjectResult result_item;
        result_item.rect = {xmin, ymin, xmax, ymax};
        result_item.class_id = class_id;
        result_item.confidence = score;
        result->push_back(result_item);
      }
    }
    start_idx += bbox_num[im_id];
  }
}

void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
                             const int warmup,
                             const int repeats,
                             std::vector<PPShiTu::ObjectResult>* result,
                             std::vector<int>* bbox_num,
                             std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;
  std::vector<float> im_shape_all(batch_size * 2);
  std::vector<float> scale_factor_all(batch_size * 2);
  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);
    im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
    im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];

    scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
    scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }
  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<const float *> output_data_list_;
  // Prepare input tensor

  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputByName(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Resize({batch_size, 3, rh, rw});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
    } else if (tensor_name == "im_shape") {
      in_tensor->Resize({batch_size, 2});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(im_shape_all.data(), im_shape_all.size(), inptr);
    } else if (tensor_name == "scale_factor") {
      in_tensor->Resize({batch_size, 2});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(scale_factor_all.data(), scale_factor_all.size(), inptr);
    }
  }

  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    if (config_.arch_ == "PicoDet") {
      for (int j = 0; j < output_names.size(); j++) {
        auto output_tensor = predictor_->GetTensor(output_names[j]);
        const float* outptr = output_tensor->data<float>();
        std::vector<int64_t> output_shape = output_tensor->shape();
        output_data_list_.push_back(outptr);
      }
    } else {
      auto out_tensor = predictor_->GetTensor(output_names[0]);
      auto out_bbox_num = predictor_->GetTensor(output_names[1]);
    }
  }

  bool is_rbox = false;
  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Get output tensor
  output_data_list_.clear();
238
  int num_class = 1;
D
dongshuilong 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  int reg_max = 7;
  auto output_names = predictor_->GetOutputNames();
  // TODO: Unified model output.
  if (config_.arch_ == "PicoDet") {
    for (int i = 0; i < output_names.size(); i++) {
      auto output_tensor = predictor_->GetTensor(output_names[i]);
      const float* outptr = output_tensor->data<float>();
      std::vector<int64_t> output_shape = output_tensor->shape();
      if (i == 0) {
        num_class = output_shape[2];
      }
      if (i == config_.fpn_stride_.size()) {
        reg_max = output_shape[2] / 4 - 1;
      }
      output_data_list_.push_back(outptr);
    }
  } else {
    auto output_tensor = predictor_->GetTensor(output_names[0]);
    auto output_shape = output_tensor->shape();
    auto out_bbox_num = predictor_->GetTensor(output_names[1]);
    auto out_bbox_num_shape = out_bbox_num->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    is_rbox = output_shape[output_shape.size() - 1] % 10 == 0;

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    std::copy_n(
        output_tensor->mutable_data<float>(), output_size, output_data_.data());

    int out_bbox_num_size = 1;
    for (int j = 0; j < out_bbox_num_shape.size(); ++j) {
      out_bbox_num_size *= out_bbox_num_shape[j];
    }
    out_bbox_num_data_.resize(out_bbox_num_size);
    std::copy_n(out_bbox_num->mutable_data<int>(),
                out_bbox_num_size,
                out_bbox_num_data_.data());
  }
  // Postprocessing result
284

D
dongshuilong 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  result->clear();
  if (config_.arch_ == "PicoDet") {
    PPShiTu::PicoDetPostProcess(
        result, output_data_list_, config_.fpn_stride_, 
        inputs_.im_shape_, inputs_.scale_factor_,
        config_.nms_info_["score_threshold"].as<float>(), 
        config_.nms_info_["nms_threshold"].as<float>(), num_class, reg_max);
    bbox_num->push_back(result->size());
  } else {
    Postprocess(imgs, result, out_bbox_num_data_, is_rbox);
    bbox_num->clear();
    for (int k = 0; k < out_bbox_num_data_.size(); k++) {
      int tmp = out_bbox_num_data_[k];
      bbox_num->push_back(tmp);
    }
  }
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PPShiTu