googlenet.py 6.7 KB
Newer Older
W
WuHaobo 已提交
1 2 3
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys
import time

__all__ = ['GoogLeNet_DY']


def xavier(channels, filter_size, name):
    stdv = (3.0 / (filter_size**2 * channels))**0.5
    param_attr = ParamAttr(
        initializer=fluid.initializer.Uniform(-stdv, stdv),
        name=name + "_weights")
W
WuHaobo 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    return param_attr


class ConvLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
39 40 41 42 43 44
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)

    def forward(self, inputs):
        y = self._conv(inputs)
        return y


class Inception(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter1,
                 filter3R,
                 filter3,
                 filter5R,
                 filter5,
                 proj,
                 name=None):
        super(Inception, self).__init__()

        self._conv1 = ConvLayer(
            input_channels, filter1, 1, name="inception_" + name + "_1x1")
        self._conv3r = ConvLayer(
            input_channels,
            filter3R,
            1,
W
WuHaobo 已提交
72
            name="inception_" + name + "_3x3_reduce")
73 74 75 76 77 78
        self._conv3 = ConvLayer(
            filter3R, filter3, 3, name="inception_" + name + "_3x3")
        self._conv5r = ConvLayer(
            input_channels,
            filter5R,
            1,
W
WuHaobo 已提交
79
            name="inception_" + name + "_5x5_reduce")
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        self._conv5 = ConvLayer(
            filter5R, filter5, 5, name="inception_" + name + "_5x5")
        self._pool = Pool2D(
            pool_size=3, pool_type="max", pool_stride=1, pool_padding=1)
        self._convprj = ConvLayer(
            input_channels, proj, 1, name="inception_" + name + "_3x3_proj")

    def forward(self, inputs):
        conv1 = self._conv1(inputs)

        conv3r = self._conv3r(inputs)
        conv3 = self._conv3(conv3r)

        conv5r = self._conv5r(inputs)
        conv5 = self._conv5(conv5r)

        pool = self._pool(inputs)
        convprj = self._convprj(pool)

        cat = fluid.layers.concat([conv1, conv3, conv5, convprj], axis=1)
        layer_helper = LayerHelper(self.full_name(), act="relu")
        return layer_helper.append_activation(cat)


class GoogleNet_DY(fluid.dygraph.Layer):
    def __init__(self, class_dim=1000):
        super(GoogleNet_DY, self).__init__()
        self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
        self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")

        self._ince3a = Inception(
            192, 192, 64, 96, 128, 16, 32, 32, name="ince3a")
        self._ince3b = Inception(
            256, 256, 128, 128, 192, 32, 96, 64, name="ince3b")

        self._ince4a = Inception(
            480, 480, 192, 96, 208, 16, 48, 64, name="ince4a")
        self._ince4b = Inception(
            512, 512, 160, 112, 224, 24, 64, 64, name="ince4b")
        self._ince4c = Inception(
            512, 512, 128, 128, 256, 24, 64, 64, name="ince4c")
        self._ince4d = Inception(
            512, 512, 112, 144, 288, 32, 64, 64, name="ince4d")
        self._ince4e = Inception(
            528, 528, 256, 160, 320, 32, 128, 128, name="ince4e")

        self._ince5a = Inception(
            832, 832, 256, 160, 320, 32, 128, 128, name="ince5a")
        self._ince5b = Inception(
            832, 832, 384, 192, 384, 48, 128, 128, name="ince5b")

        self._pool_5 = Pool2D(pool_size=7, pool_type='avg', pool_stride=7)

        self._drop = fluid.dygraph.Dropout(p=0.4)
        self._fc_out = Linear(
            1024,
            class_dim,
            param_attr=xavier(1024, 1, "out"),
            bias_attr=ParamAttr(name="out_offset"),
            act="softmax")
        self._pool_o1 = Pool2D(pool_size=5, pool_stride=3, pool_type="avg")
        self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
        self._fc_o1 = Linear(
            1152,
            1024,
            param_attr=xavier(2048, 1, "fc_o1"),
            bias_attr=ParamAttr(name="fc_o1_offset"),
            act="relu")
        self._drop_o1 = fluid.dygraph.Dropout(p=0.7)
        self._out1 = Linear(
            1024,
            class_dim,
            param_attr=xavier(1024, 1, "out1"),
            bias_attr=ParamAttr(name="out1_offset"),
            act="softmax")
        self._pool_o2 = Pool2D(pool_size=5, pool_stride=3, pool_type='avg')
        self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
        self._fc_o2 = Linear(
            1152,
            1024,
            param_attr=xavier(2048, 1, "fc_o2"),
            bias_attr=ParamAttr(name="fc_o2_offset"))
        self._drop_o2 = fluid.dygraph.Dropout(p=0.7)
        self._out2 = Linear(
            1024,
            class_dim,
            param_attr=xavier(1024, 1, "out2"),
            bias_attr=ParamAttr(name="out2_offset"))

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._pool(x)
        x = self._conv_1(x)
        x = self._conv_2(x)
        x = self._pool(x)

        x = self._ince3a(x)
        x = self._ince3b(x)
        x = self._pool(x)

        ince4a = self._ince4a(x)
        x = self._ince4b(ince4a)
        x = self._ince4c(x)
        ince4d = self._ince4d(x)
        x = self._ince4e(ince4d)
        x = self._pool(x)

        x = self._ince5a(x)
        ince5b = self._ince5b(x)

        x = self._pool_5(ince5b)
        x = self._drop(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        out = self._fc_out(x)

        x = self._pool_o1(ince4a)
        x = self._conv_o1(x)
        x = fluid.layers.flatten(x)
        x = self._fc_o1(x)
        x = self._drop_o1(x)
        out1 = self._out1(x)

        x = self._pool_o2(ince4d)
        x = self._conv_o2(x)
        x = fluid.layers.flatten(x)
        x = self._fc_o2(x)
        x = self._drop_o2(x)
        out2 = self._out2(x)
W
WuHaobo 已提交
210
        return [out, out1, out2]
211 212 213 214 215


def GoogLeNet():
    model = GoogleNet_DY()
    return model