retrieval.py 6.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
dongshuilong 已提交
17

D
dongshuilong 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
import platform
import paddle
from ppcls.utils import logger


def retrieval_eval(evaler, epoch_id=0):
    evaler.model.eval()
    # step1. build gallery
    gallery_feas, gallery_img_id, gallery_unique_id = cal_feature(
        evaler, name='gallery')
    query_feas, query_img_id, query_query_id = cal_feature(
        evaler, name='query')

    # step2. do evaluation
    sim_block_size = evaler.config["Global"].get("sim_block_size", 64)
    sections = [sim_block_size] * (len(query_feas) // sim_block_size)
    if len(query_feas) % sim_block_size:
        sections.append(len(query_feas) % sim_block_size)
    fea_blocks = paddle.split(query_feas, num_or_sections=sections)
    if query_query_id is not None:
        query_id_blocks = paddle.split(
            query_query_id, num_or_sections=sections)
    image_id_blocks = paddle.split(query_img_id, num_or_sections=sections)
    metric_key = None

    if evaler.eval_loss_func is None:
        metric_dict = {metric_key: 0.}
    else:
        metric_dict = dict()
        for block_idx, block_fea in enumerate(fea_blocks):
            similarity_matrix = paddle.matmul(
                block_fea, gallery_feas, transpose_y=True)
            if query_query_id is not None:
                query_id_block = query_id_blocks[block_idx]
                query_id_mask = (query_id_block != gallery_unique_id.t())

                image_id_block = image_id_blocks[block_idx]
                image_id_mask = (image_id_block != gallery_img_id.t())

                keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
                similarity_matrix = similarity_matrix * keep_mask.astype(
                    "float32")
            else:
                keep_mask = None

            metric_tmp = evaler.eval_metric_func(similarity_matrix,
                                                 image_id_blocks[block_idx],
                                                 gallery_img_id, keep_mask)

            for key in metric_tmp:
                if key not in metric_dict:
                    metric_dict[key] = metric_tmp[key] * block_fea.shape[
                        0] / len(query_feas)
                else:
                    metric_dict[key] += metric_tmp[key] * block_fea.shape[
                        0] / len(query_feas)

    metric_info_list = []
    for key in metric_dict:
        if metric_key is None:
            metric_key = key
        metric_info_list.append("{}: {:.5f}".format(key, metric_dict[key]))
    metric_msg = ", ".join(metric_info_list)
    logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

    return metric_dict[metric_key]


def cal_feature(evaler, name='gallery'):
    all_feas = None
    all_image_id = None
    all_unique_id = None
    has_unique_id = False

    if name == 'gallery':
        dataloader = evaler.gallery_dataloader
    elif name == 'query':
        dataloader = evaler.query_dataloader
    else:
        raise RuntimeError("Only support gallery or query dataset")

    max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len(
        dataloader)
    dataloader_tmp = dataloader if evaler.use_dali else dataloader()
    for idx, batch in enumerate(dataloader_tmp):  # load is very time-consuming
        if idx >= max_iter:
            break
        if idx % evaler.config["Global"]["print_batch_step"] == 0:
            logger.info(
                f"{name} feature calculation process: [{idx}/{len(dataloader)}]"
            )
        if evaler.use_dali:
            batch = [
                paddle.to_tensor(batch[0]['data']),
                paddle.to_tensor(batch[0]['label'])
            ]
        batch = [paddle.to_tensor(x) for x in batch]
        batch[1] = batch[1].reshape([-1, 1]).astype("int64")
        if len(batch) == 3:
            has_unique_id = True
            batch[2] = batch[2].reshape([-1, 1]).astype("int64")
        out = evaler.model(batch[0], batch[1])
        batch_feas = out["features"]

        # do norm
        if evaler.config["Global"].get("feature_normalize", True):
            feas_norm = paddle.sqrt(
                paddle.sum(paddle.square(batch_feas), axis=1, keepdim=True))
            batch_feas = paddle.divide(batch_feas, feas_norm)
B
Bin Lu 已提交
127 128
            
        # do binarize
B
Bin Lu 已提交
129
        if evaler.config["Global"].get("feature_binarize") == "round":
B
Bin Lu 已提交
130 131
            batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0

B
Bin Lu 已提交
132
        if evaler.config["Global"].get("feature_binarize") == "sign":
B
Bin Lu 已提交
133
            batch_feas = paddle.sign(batch_feas).astype("float32")
D
dongshuilong 已提交
134 135 136 137 138 139 140 141 142 143 144

        if all_feas is None:
            all_feas = batch_feas
            if has_unique_id:
                all_unique_id = batch[2]
            all_image_id = batch[1]
        else:
            all_feas = paddle.concat([all_feas, batch_feas])
            all_image_id = paddle.concat([all_image_id, batch[1]])
            if has_unique_id:
                all_unique_id = paddle.concat([all_unique_id, batch[2]])
B
Bin Lu 已提交
145
                
D
dongshuilong 已提交
146 147
    if evaler.use_dali:
        dataloader_tmp.reset()
B
Bin Lu 已提交
148
        
D
dongshuilong 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    if paddle.distributed.get_world_size() > 1:
        feat_list = []
        img_id_list = []
        unique_id_list = []
        paddle.distributed.all_gather(feat_list, all_feas)
        paddle.distributed.all_gather(img_id_list, all_image_id)
        all_feas = paddle.concat(feat_list, axis=0)
        all_image_id = paddle.concat(img_id_list, axis=0)
        if has_unique_id:
            paddle.distributed.all_gather(unique_id_list, all_unique_id)
            all_unique_id = paddle.concat(unique_id_list, axis=0)

    logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
        name, all_feas.shape))
    return all_feas, all_image_id, all_unique_id