densenet.py 9.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

littletomatodonkey's avatar
littletomatodonkey 已提交
19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from paddle.nn.initializer import Uniform
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
littletomatodonkey's avatar
littletomatodonkey 已提交
30
    "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264"
W
WuHaobo 已提交
31 32 33
]


littletomatodonkey's avatar
littletomatodonkey 已提交
34
class BNACConvLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

littletomatodonkey's avatar
littletomatodonkey 已提交
54 55 56 57
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
58 59 60
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
61
            weight_attr=ParamAttr(name=name + "_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63 64 65 66 67 68 69
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
70
class DenseLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
        super(DenseLayer, self).__init__()
        self.dropout = dropout

        self.bn_ac_func1 = BNACConvLayer(
            num_channels=num_channels,
            num_filters=bn_size * growth_rate,
            filter_size=1,
            pad=0,
            stride=1,
            name=name + "_x1")

        self.bn_ac_func2 = BNACConvLayer(
            num_channels=bn_size * growth_rate,
            num_filters=growth_rate,
            filter_size=3,
            pad=1,
            stride=1,
            name=name + "_x2")

        if dropout:
littletomatodonkey's avatar
littletomatodonkey 已提交
92
            self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
littletomatodonkey's avatar
littletomatodonkey 已提交
93 94 95 96 97 98

    def forward(self, input):
        conv = self.bn_ac_func1(input)
        conv = self.bn_ac_func2(conv)
        if self.dropout:
            conv = self.dropout_func(conv)
littletomatodonkey's avatar
littletomatodonkey 已提交
99
        conv = paddle.concat([input, conv], axis=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
100 101 102
        return conv


littletomatodonkey's avatar
littletomatodonkey 已提交
103
class DenseBlock(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def __init__(self,
                 num_channels,
                 num_layers,
                 bn_size,
                 growth_rate,
                 dropout,
                 name=None):
        super(DenseBlock, self).__init__()
        self.dropout = dropout

        self.dense_layer_func = []

        pre_channel = num_channels
        for layer in range(num_layers):
            self.dense_layer_func.append(
                self.add_sublayer(
                    "{}_{}".format(name, layer + 1),
                    DenseLayer(
                        num_channels=pre_channel,
                        growth_rate=growth_rate,
                        bn_size=bn_size,
                        dropout=dropout,
                        name=name + '_' + str(layer + 1))))
            pre_channel = pre_channel + growth_rate

    def forward(self, input):
        conv = input
        for func in self.dense_layer_func:
            conv = func(conv)
        return conv


littletomatodonkey's avatar
littletomatodonkey 已提交
136
class TransitionLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
137 138 139 140 141 142 143 144 145 146 147
    def __init__(self, num_channels, num_output_features, name=None):
        super(TransitionLayer, self).__init__()

        self.conv_ac_func = BNACConvLayer(
            num_channels=num_channels,
            num_filters=num_output_features,
            filter_size=1,
            pad=0,
            stride=1,
            name=name)

littletomatodonkey's avatar
littletomatodonkey 已提交
148
        self.pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0)
littletomatodonkey's avatar
littletomatodonkey 已提交
149 150 151 152 153 154 155

    def forward(self, input):
        y = self.conv_ac_func(input)
        y = self.pool2d_avg(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
156
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
157 158 159 160 161 162 163 164 165 166 167
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
168 169 170 171
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
172 173 174
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
175
            weight_attr=ParamAttr(name=name + "_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
191
class DenseNet(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
192 193
    def __init__(self, layers=60, bn_size=4, dropout=0, class_dim=1000):
        super(DenseNet, self).__init__()
W
WuHaobo 已提交
194 195 196

        supported_layers = [121, 161, 169, 201, 264]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
197 198
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
199 200 201 202 203 204 205 206
        densenet_spec = {
            121: (64, 32, [6, 12, 24, 16]),
            161: (96, 48, [6, 12, 36, 24]),
            169: (64, 32, [6, 12, 32, 32]),
            201: (64, 32, [6, 12, 48, 32]),
            264: (64, 32, [6, 12, 64, 48])
        }
        num_init_features, growth_rate, block_config = densenet_spec[layers]
littletomatodonkey's avatar
littletomatodonkey 已提交
207 208 209

        self.conv1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
210 211 212
            num_filters=num_init_features,
            filter_size=7,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
213
            pad=3,
W
WuHaobo 已提交
214
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
215 216
            name="conv1")

littletomatodonkey's avatar
littletomatodonkey 已提交
217
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
218 219 220 221 222 223

        self.block_config = block_config

        self.dense_block_func_list = []
        self.transition_func_list = []
        pre_num_channels = num_init_features
W
WuHaobo 已提交
224 225
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
littletomatodonkey's avatar
littletomatodonkey 已提交
226 227 228 229 230 231 232 233 234 235 236
            self.dense_block_func_list.append(
                self.add_sublayer(
                    "db_conv_{}".format(i + 2),
                    DenseBlock(
                        num_channels=pre_num_channels,
                        num_layers=num_layers,
                        bn_size=bn_size,
                        growth_rate=growth_rate,
                        dropout=dropout,
                        name='conv' + str(i + 2))))

W
WuHaobo 已提交
237
            num_features = num_features + num_layers * growth_rate
littletomatodonkey's avatar
littletomatodonkey 已提交
238 239
            pre_num_channels = num_features

W
WuHaobo 已提交
240
            if i != len(block_config) - 1:
littletomatodonkey's avatar
littletomatodonkey 已提交
241 242 243 244 245 246 247 248
                self.transition_func_list.append(
                    self.add_sublayer(
                        "tr_conv{}_blk".format(i + 2),
                        TransitionLayer(
                            num_channels=pre_num_channels,
                            num_output_features=num_features // 2,
                            name='conv' + str(i + 2) + "_blk")))
                pre_num_channels = num_features // 2
W
WuHaobo 已提交
249
                num_features = num_features // 2
littletomatodonkey's avatar
littletomatodonkey 已提交
250 251 252 253

        self.batch_norm = BatchNorm(
            num_features,
            act="relu",
W
WuHaobo 已提交
254 255 256 257
            param_attr=ParamAttr(name='conv5_blk_bn_scale'),
            bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
            moving_mean_name='conv5_blk_bn_mean',
            moving_variance_name='conv5_blk_bn_variance')
littletomatodonkey's avatar
littletomatodonkey 已提交
258

littletomatodonkey's avatar
littletomatodonkey 已提交
259
        self.pool2d_avg = AdaptiveAvgPool2d(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
260 261 262 263 264 265

        stdv = 1.0 / math.sqrt(num_features * 1.0)

        self.out = Linear(
            num_features,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
266 267
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
268
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
269

littletomatodonkey's avatar
littletomatodonkey 已提交
270 271 272
    def forward(self, input):
        conv = self.conv1_func(input)
        conv = self.pool2d_max(conv)
W
WuHaobo 已提交
273

littletomatodonkey's avatar
littletomatodonkey 已提交
274 275 276 277
        for i, num_layers in enumerate(self.block_config):
            conv = self.dense_block_func_list[i](conv)
            if i != len(self.block_config) - 1:
                conv = self.transition_func_list[i](conv)
W
WuHaobo 已提交
278

littletomatodonkey's avatar
littletomatodonkey 已提交
279 280
        conv = self.batch_norm(conv)
        y = self.pool2d_avg(conv)
littletomatodonkey's avatar
littletomatodonkey 已提交
281
        y = paddle.reshape(y, shape=[0, -1])
littletomatodonkey's avatar
littletomatodonkey 已提交
282 283
        y = self.out(y)
        return y
W
WuHaobo 已提交
284 285


littletomatodonkey's avatar
littletomatodonkey 已提交
286 287
def DenseNet121(**args):
    model = DenseNet(layers=121, **args)
W
WuHaobo 已提交
288 289 290
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
291 292
def DenseNet161(**args):
    model = DenseNet(layers=161, **args)
W
WuHaobo 已提交
293 294 295
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
296 297
def DenseNet169(**args):
    model = DenseNet(layers=169, **args)
W
WuHaobo 已提交
298 299 300
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
301 302
def DenseNet201(**args):
    model = DenseNet(layers=201, **args)
W
WuHaobo 已提交
303 304 305
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
306 307
def DenseNet264(**args):
    model = DenseNet(layers=264, **args)
W
WuHaobo 已提交
308
    return model