distilled_vision_transformer.py 4.5 KB
Newer Older
jm_12138's avatar
jm_12138 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_


__all__ = [
    'DeiT_tiny_patch16_224', 'DeiT_small_patch16_224', 'DeiT_base_patch16_224',
    'DeiT_tiny_distilled_patch16_224', 'DeiT_small_distilled_patch16_224',
    'DeiT_base_distilled_patch16_224', 'DeiT_base_patch16_384',
    'DeiT_base_distilled_patch16_384'
]


class DistilledVisionTransformer(VisionTransformer):
    def __init__(self, img_size=224, patch_size=16, class_dim=1000, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer='nn.LayerNorm', epsilon=1e-5,
                 **kwargs):
        super().__init__(img_size=img_size, patch_size=patch_size, class_dim=class_dim, embed_dim=embed_dim, depth=depth,
                         num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, epsilon=epsilon,
                         **kwargs)
        self.pos_embed = self.create_parameter(
            shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), default_initializer=zeros_)
        self.add_parameter("pos_embed", self.pos_embed)

        self.dist_token = self.create_parameter(
            shape=(1, 1, self.embed_dim), default_initializer=zeros_)
        self.add_parameter("cls_token", self.cls_token)

        self.head_dist = nn.Linear(
            self.embed_dim, self.class_dim) if self.class_dim > 0 else Identity()

        trunc_normal_(self.dist_token)
        trunc_normal_(self.pos_embed)
        self.head_dist.apply(self._init_weights)

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand((B, -1, -1))
        dist_token = self.dist_token.expand((B, -1, -1))
        x = paddle.concat((cls_tokens, dist_token, x), axis=1)

        x = x + self.pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)
        return x[:, 0], x[:, 1]

    def forward(self, x):
        x, x_dist = self.forward_features(x)
        x = self.head(x)
        x_dist = self.head_dist(x_dist)
        return (x + x_dist) / 2


def DeiT_tiny_patch16_224(**kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_small_patch16_224(**kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_base_patch16_224(**kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_tiny_distilled_patch16_224(**kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_small_distilled_patch16_224(**kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_base_distilled_patch16_224(**kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_base_patch16_384(**kwargs):
    model = VisionTransformer(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model


def DeiT_base_distilled_patch16_384(**kwargs):
    model = DistilledVisionTransformer(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        epsilon=1e-6, **kwargs)
    return model