dpn.py 13.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
19
import numpy as np
littletomatodonkey's avatar
littletomatodonkey 已提交
20
import sys
21
import paddle
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
22 23
from paddle import ParamAttr
import paddle.nn as nn
24 25
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
26
from paddle.nn.initializer import Uniform
27 28 29

import math

C
cuicheng01 已提交
30 31 32 33 34 35 36 37 38 39
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {"DPN68": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams",
              "DPN92": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams",
              "DPN98": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams",
              "DPN107": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams",
              "DPN131": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams",
             }

__all__ = list(MODEL_URLS.keys())
40 41


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
42
class ConvBNLayer(nn.Layer):
43 44 45 46 47 48 49 50 51 52 53
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

54
        self._conv = Conv2D(
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
55 56 57
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
58 59 60
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
61
            weight_attr=ParamAttr(name=name + "_weights"),
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
77
class BNACConvLayer(nn.Layer):
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()
        self.num_channels = num_channels

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

98
        self._conv = Conv2D(
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
99 100 101
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
102 103 104
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
105
            weight_attr=ParamAttr(name=name + "_weights"),
106 107 108 109 110 111 112 113
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
114
class DualPathFactory(nn.Layer):
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def __init__(self,
                 num_channels,
                 num_1x1_a,
                 num_3x3_b,
                 num_1x1_c,
                 inc,
                 G,
                 _type='normal',
                 name=None):
        super(DualPathFactory, self).__init__()

        self.num_1x1_c = num_1x1_c
        self.inc = inc
        self.name = name

        kw = 3
        kh = 3
        pw = (kw - 1) // 2
        ph = (kh - 1) // 2

        # type
        if _type == 'proj':
            key_stride = 1
            self.has_proj = True
        elif _type == 'down':
            key_stride = 2
            self.has_proj = True
        elif _type == 'normal':
            key_stride = 1
            self.has_proj = False
        else:
            print("not implemented now!!!")
            sys.exit(1)
W
WuHaobo 已提交
148

149 150
        data_in_ch = sum(num_channels) if isinstance(num_channels,
                                                     list) else num_channels
W
WuHaobo 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        if self.has_proj:
            self.c1x1_w_func = BNACConvLayer(
                num_channels=data_in_ch,
                num_filters=num_1x1_c + 2 * inc,
                filter_size=(1, 1),
                pad=(0, 0),
                stride=(key_stride, key_stride),
                name=name + "_match")

        self.c1x1_a_func = BNACConvLayer(
            num_channels=data_in_ch,
            num_filters=num_1x1_a,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv1")

        self.c3x3_b_func = BNACConvLayer(
            num_channels=num_1x1_a,
            num_filters=num_3x3_b,
            filter_size=(kw, kh),
            pad=(pw, ph),
            stride=(key_stride, key_stride),
            groups=G,
            name=name + "_conv2")
W
WuHaobo 已提交
176

177 178 179 180 181 182 183 184 185 186
        self.c1x1_c_func = BNACConvLayer(
            num_channels=num_3x3_b,
            num_filters=num_1x1_c + inc,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv3")

    def forward(self, input):
        # PROJ
        if isinstance(input, list):
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
187
            data_in = paddle.concat([input[0], input[1]], axis=1)
188 189 190 191 192
        else:
            data_in = input

        if self.has_proj:
            c1x1_w = self.c1x1_w_func(data_in)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
193 194
            data_o1, data_o2 = paddle.split(
                c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], axis=1)
195 196 197 198 199 200 201 202
        else:
            data_o1 = input[0]
            data_o2 = input[1]

        c1x1_a = self.c1x1_a_func(data_in)
        c3x3_b = self.c3x3_b_func(c1x1_a)
        c1x1_c = self.c1x1_c_func(c3x3_b)

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
203 204
        c1x1_c1, c1x1_c2 = paddle.split(
            c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], axis=1)
205 206

        # OUTPUTS
207
        summ = paddle.add(x=data_o1, y=c1x1_c1)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
208
        dense = paddle.concat([data_o2, c1x1_c2], axis=1)
209 210
        # tensor, channels
        return [summ, dense]
W
WuHaobo 已提交
211

212

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
213
class DPN(nn.Layer):
L
littletomatodonkey 已提交
214
    def __init__(self, layers=68, class_dim=1000):
215 216 217 218 219
        super(DPN, self).__init__()

        self._class_dim = class_dim

        args = self.get_net_args(layers)
W
WuHaobo 已提交
220 221 222 223 224 225 226 227 228 229
        bws = args['bw']
        inc_sec = args['inc_sec']
        rs = args['r']
        k_r = args['k_r']
        k_sec = args['k_sec']
        G = args['G']
        init_num_filter = args['init_num_filter']
        init_filter_size = args['init_filter_size']
        init_padding = args['init_padding']

230
        self.k_sec = k_sec
W
WuHaobo 已提交
231

232 233
        self.conv1_x_1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
234
            num_filters=init_num_filter,
L
littletomatodonkey 已提交
235
            filter_size=init_filter_size,
W
WuHaobo 已提交
236
            stride=2,
L
littletomatodonkey 已提交
237
            pad=init_padding,
W
WuHaobo 已提交
238
            act='relu',
239 240
            name="conv1")

241
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
242

243 244 245
        num_channel_dpn = init_num_filter

        self.dpn_func_list = []
W
WuHaobo 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        #conv2 - conv5
        match_list, num = [], 0
        for gc in range(4):
            bw = bws[gc]
            inc = inc_sec[gc]
            R = (k_r * bw) // rs[gc]
            if gc == 0:
                _type1 = 'proj'
                _type2 = 'normal'
                match = 1
            else:
                _type1 = 'down'
                _type2 = 'normal'
                match = match + k_sec[gc - 1]
            match_list.append(match)
261 262 263 264 265 266 267 268 269 270 271 272 273
            self.dpn_func_list.append(
                self.add_sublayer(
                    "dpn{}".format(match),
                    DualPathFactory(
                        num_channels=num_channel_dpn,
                        num_1x1_a=R,
                        num_3x3_b=R,
                        num_1x1_c=bw,
                        inc=inc,
                        G=G,
                        _type=_type1,
                        name="dpn" + str(match))))
            num_channel_dpn = [bw, 3 * inc]
W
WuHaobo 已提交
274 275 276 277 278

            for i_ly in range(2, k_sec[gc] + 1):
                num += 1
                if num in match_list:
                    num += 1
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                self.dpn_func_list.append(
                    self.add_sublayer(
                        "dpn{}".format(num),
                        DualPathFactory(
                            num_channels=num_channel_dpn,
                            num_1x1_a=R,
                            num_3x3_b=R,
                            num_1x1_c=bw,
                            inc=inc,
                            G=G,
                            _type=_type2,
                            name="dpn" + str(num))))

                num_channel_dpn = [
                    num_channel_dpn[0], num_channel_dpn[1] + inc
                ]

        out_channel = sum(num_channel_dpn)

        self.conv5_x_x_bn = BatchNorm(
            num_channels=sum(num_channel_dpn),
            act="relu",
W
WuHaobo 已提交
301 302 303
            param_attr=ParamAttr(name='final_concat_bn_scale'),
            bias_attr=ParamAttr('final_concat_bn_offset'),
            moving_mean_name='final_concat_bn_mean',
304 305
            moving_variance_name='final_concat_bn_variance')

306
        self.pool2d_avg = AdaptiveAvgPool2D(1)
W
WuHaobo 已提交
307 308

        stdv = 0.01
309 310 311 312

        self.out = Linear(
            out_channel,
            class_dim,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
313 314
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
315
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
316

317 318 319 320 321 322 323 324 325 326 327 328
    def forward(self, input):
        conv1_x_1 = self.conv1_x_1_func(input)
        convX_x_x = self.pool2d_max(conv1_x_1)

        dpn_idx = 0
        for gc in range(4):
            convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
            dpn_idx += 1
            for i_ly in range(2, self.k_sec[gc] + 1):
                convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
                dpn_idx += 1

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
329
        conv5_x_x = paddle.concat(convX_x_x, axis=1)
330 331 332
        conv5_x_x = self.conv5_x_x_bn(conv5_x_x)

        y = self.pool2d_avg(conv5_x_x)
L
littletomatodonkey 已提交
333
        y = paddle.flatten(y, start_axis=1, stop_axis=-1)
334 335
        y = self.out(y)
        return y
W
WuHaobo 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    def get_net_args(self, layers):
        if layers == 68:
            k_r = 128
            G = 32
            k_sec = [3, 4, 12, 3]
            inc_sec = [16, 32, 32, 64]
            bw = [64, 128, 256, 512]
            r = [64, 64, 64, 64]
            init_num_filter = 10
            init_filter_size = 3
            init_padding = 1
        elif layers == 92:
            k_r = 96
            G = 32
            k_sec = [3, 4, 20, 3]
            inc_sec = [16, 32, 24, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 64
            init_filter_size = 7
            init_padding = 3
        elif layers == 98:
            k_r = 160
            G = 40
            k_sec = [3, 6, 20, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 96
            init_filter_size = 7
            init_padding = 3
        elif layers == 107:
            k_r = 200
            G = 50
            k_sec = [4, 8, 20, 3]
            inc_sec = [20, 64, 64, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        elif layers == 131:
            k_r = 160
            G = 40
            k_sec = [4, 8, 28, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        else:
            raise NotImplementedError
        net_arg = {
            'k_r': k_r,
            'G': G,
            'k_sec': k_sec,
            'inc_sec': inc_sec,
            'bw': bw,
            'r': r
        }
        net_arg['init_num_filter'] = init_num_filter
        net_arg['init_filter_size'] = init_filter_size
        net_arg['init_padding'] = init_padding

        return net_arg
C
cuicheng01 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )  


def DPN68(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=68, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN68"])
W
WuHaobo 已提交
420 421 422
    return model


C
cuicheng01 已提交
423 424 425
def DPN92(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=92, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN92"])
W
WuHaobo 已提交
426 427 428
    return model


C
cuicheng01 已提交
429 430 431
def DPN98(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=98, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN98"])
W
WuHaobo 已提交
432 433 434
    return model


C
cuicheng01 已提交
435 436 437
def DPN107(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=107, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN107"])
W
WuHaobo 已提交
438 439 440
    return model


C
cuicheng01 已提交
441 442 443 444
def DPN131(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=131, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN131"])
    return model