train_multi_platform.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
littletomatodonkey's avatar
littletomatodonkey 已提交
21
from sys import version_info
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

import paddle.fluid as fluid

from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program


def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
        default='configs/ResNet/ResNet50.yaml',
        help='config file path')
    parser.add_argument(
        '--vdl_dir',
        type=str,
        default=None,
        help='VisualDL logging directory for image.')
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    config = get_config(args.config, overrides=args.override, show=True)
    # assign the place
    use_gpu = config.get("use_gpu", True)
    places = fluid.cuda_places() if use_gpu else fluid.cpu_places()

    # startup_prog is used to do some parameter init work,
    # and train prog is used to hold the network
    startup_prog = fluid.Program()
    train_prog = fluid.Program()

    best_top1_acc = 0.0  # best top1 acc record

    if not config.get('use_ema'):
        train_dataloader, train_fetchs = program.build(
            config,
            train_prog,
            startup_prog,
            is_train=True,
            is_distributed=False)
    else:
        train_dataloader, train_fetchs, ema = program.build(
            config,
            train_prog,
            startup_prog,
            is_train=True,
            is_distributed=False)

    if config.validate:
        valid_prog = fluid.Program()
        valid_dataloader, valid_fetchs = program.build(
            config,
            valid_prog,
            startup_prog,
            is_train=False,
            is_distributed=False)
        # clone to prune some content which is irrelevant in valid_prog
        valid_prog = valid_prog.clone(for_test=True)

    # create the "Executor" with the statement of which place
    exe = fluid.Executor(places[0])
    # Parameter initialization
    exe.run(startup_prog)

    # load model from 1. checkpoint to resume training, 2. pretrained model to finetune
    init_model(config, train_prog, exe)

    train_reader = Reader(config, 'train')()
    train_dataloader.set_sample_list_generator(train_reader, places)

littletomatodonkey's avatar
littletomatodonkey 已提交
105 106 107
    compiled_train_prog = program.compile(config, train_prog,
                                          train_fetchs['loss'][0].name)

108 109 110
    if config.validate:
        valid_reader = Reader(config, 'valid')()
        valid_dataloader.set_sample_list_generator(valid_reader, places)
littletomatodonkey's avatar
littletomatodonkey 已提交
111 112
        compiled_valid_prog = program.compile(
            config, valid_prog, share_prog=compiled_train_prog)
113

littletomatodonkey's avatar
littletomatodonkey 已提交
114
    vdl_writer = None
115
    if args.vdl_dir:
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118 119 120 121 122
        if version_info.major == 2:
            logger.info(
                "visualdl is just supported for python3, so it is disabled in python2..."
            )
        else:
            from visualdl import LogWriter
            vdl_writer = LogWriter(args.vdl_dir)
123 124 125 126

    for epoch_id in range(config.epochs):
        # 1. train with train dataset
        program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
littletomatodonkey's avatar
littletomatodonkey 已提交
127
                    epoch_id, 'train', config, vdl_writer)
littletomatodonkey's avatar
littletomatodonkey 已提交
128 129 130 131 132 133 134 135

        # 2. validate with validate dataset
        if config.validate and epoch_id % config.valid_interval == 0:
            if config.get('use_ema'):
                logger.info(logger.coloring("EMA validate start..."))
                with ema.apply(exe):
                    top1_acc = program.run(valid_dataloader, exe,
                                           compiled_valid_prog, valid_fetchs,
littletomatodonkey's avatar
littletomatodonkey 已提交
136
                                           epoch_id, 'valid', config)
littletomatodonkey's avatar
littletomatodonkey 已提交
137 138 139
                logger.info(logger.coloring("EMA validate over!"))

            top1_acc = program.run(valid_dataloader, exe, compiled_valid_prog,
littletomatodonkey's avatar
littletomatodonkey 已提交
140
                                   valid_fetchs, epoch_id, 'valid', config)
littletomatodonkey's avatar
littletomatodonkey 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            if top1_acc > best_top1_acc:
                best_top1_acc = top1_acc
                message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
                    best_top1_acc, epoch_id)
                logger.info("{:s}".format(logger.coloring(message, "RED")))
                if epoch_id % config.save_interval == 0:

                    model_path = os.path.join(config.model_save_dir,
                                              config.ARCHITECTURE["name"])
                    save_model(train_prog, model_path,
                               "best_model_in_epoch_" + str(epoch_id))

        # 3. save the persistable model
        if epoch_id % config.save_interval == 0:
            model_path = os.path.join(config.model_save_dir,
                                      config.ARCHITECTURE["name"])
            save_model(train_prog, model_path, epoch_id)
158 159 160 161 162


if __name__ == '__main__':
    args = parse_args()
    main(args)