train_metabin.py 9.1 KB
Newer Older
T
tianyi1997 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# reference: https://arxiv.org/abs/2011.14670v2

from __future__ import absolute_import, division, print_function

import time
import paddle
import numpy as np
from collections import defaultdict

from ppcls.engine.train.utils import update_loss, update_metric, log_info, type_name
from ppcls.utils import profiler
from ppcls.data import build_dataloader
from ppcls.arch.backbone.variant_models.resnet_variant import MetaBIN, BINGate
from ppcls.loss import build_loss


def train_epoch_metabin(engine, epoch_id, print_batch_step):
    tic = time.time()

    if not hasattr(engine, "train_dataloader_iter"):
        engine.train_dataloader_iter = iter(engine.train_dataloader)

    if not hasattr(engine, "meta_dataloader"):
        engine.meta_dataloader = build_dataloader(
            config=engine.config['DataLoader']['Metalearning'],
            mode='Train',
            device=engine.device)
        engine.meta_dataloader_iter = iter(engine.meta_dataloader)

    num_domain = engine.train_dataloader.dataset.num_cams
    for iter_id in range(engine.iter_per_epoch):
        # fetch data batch from dataloader
        try:
            train_batch = next(engine.train_dataloader_iter)
        except Exception:
            engine.train_dataloader_iter = iter(engine.train_dataloader)
            train_batch = next(engine.train_dataloader_iter)

        try:
            mtrain_batch, mtest_batch = get_meta_data(
                engine.meta_dataloader_iter, num_domain)
        except Exception:
            engine.meta_dataloader_iter = iter(engine.meta_dataloader)
            mtrain_batch, mtest_batch = get_meta_data(
                engine.meta_dataloader_iter, num_domain)

        profiler.add_profiler_step(engine.config["profiler_options"])
        if iter_id == 5:
            for key in engine.time_info:
                engine.time_info[key].reset()
        engine.time_info["reader_cost"].update(time.time() - tic)

        train_batch_size = train_batch[0].shape[0]
        mtrain_batch_size = mtrain_batch[0].shape[0]
        mtest_batch_size = mtest_batch[0].shape[0]
        if not engine.config["Global"].get("use_multilabel", False):
            train_batch[1] = train_batch[1].reshape([train_batch_size, -1])
            mtrain_batch[1] = mtrain_batch[1].reshape([mtrain_batch_size, -1])
            mtest_batch[1] = mtest_batch[1].reshape([mtest_batch_size, -1])

        engine.global_step += 1

        if engine.global_step == 1:  # update model (without gate) to warmup
            for i in range(engine.config["Global"]["warmup_iter"] - 1):
                out, basic_loss_dict = basic_update(engine, train_batch)
                loss_dict = basic_loss_dict
                try:
                    train_batch = next(engine.train_dataloader_iter)
                except Exception:
                    engine.train_dataloader_iter = iter(
                        engine.train_dataloader)
                    train_batch = next(engine.train_dataloader_iter)

        out, basic_loss_dict = basic_update(engine=engine, batch=train_batch)
        mtrain_loss_dict, mtest_loss_dict = metalearning_update(
            engine=engine, mtrain_batch=mtrain_batch, mtest_batch=mtest_batch)
        loss_dict = {
            **
            {"train_" + key: value
             for key, value in basic_loss_dict.items()}, ** {
                 "mtrain_" + key: value
                 for key, value in mtrain_loss_dict.items()
             }, **
            {"mtest_" + key: value
             for key, value in mtest_loss_dict.items()}
        }
        # step lr (by iter)
        # the last lr_sch is cyclic_lr
        for i in range(len(engine.lr_sch) - 1):
            if not getattr(engine.lr_sch[i], "by_epoch", False):
                engine.lr_sch[i].step()
        # update ema
        if engine.ema:
            engine.model_ema.update(engine.model)

        # below code just for logging
        # update metric_for_logger
        update_metric(engine, out, train_batch, train_batch_size)
        # update_loss_for_logger
        update_loss(engine, loss_dict, train_batch_size)
        engine.time_info["batch_cost"].update(time.time() - tic)
        if iter_id % print_batch_step == 0:
            log_info(engine, train_batch_size, epoch_id, iter_id)
        tic = time.time()

    # step lr(by epoch)
    # the last lr_sch is cyclic_lr
    for i in range(len(engine.lr_sch) - 1):
        if getattr(engine.lr_sch[i], "by_epoch", False) and \
                type_name(engine.lr_sch[i]) != "ReduceOnPlateau":
            engine.lr_sch[i].step()


def setup_opt(engine, stage):
    assert stage in ["train", "mtrain", "mtest"]
    opt = defaultdict()
    if stage == "train":
        opt["bn_mode"] = "general"
        opt["enable_inside_update"] = False
        opt["lr_gate"] = 0.0
    elif stage == "mtrain":
        opt["bn_mode"] = "hold"
        opt["enable_inside_update"] = False
        opt["lr_gate"] = 0.0
    elif stage == "mtest":
        norm_lr = engine.lr_sch[1].last_lr
        cyclic_lr = engine.lr_sch[2].get_lr()
        engine.lr_sch[2].step()  # update cyclic learning rate
        opt["bn_mode"] = "hold"
        opt["enable_inside_update"] = True
        opt["lr_gate"] = norm_lr * cyclic_lr
    for layer in engine.model.sublayers():
        if isinstance(layer, MetaBIN):
            layer.setup_opt(opt)


def reset_opt(model):
    for layer in model.sublayers():
        if isinstance(layer, MetaBIN):
            layer.reset_opt()


def get_meta_data(meta_dataloader_iter, num_domain):
    """
    fetch data batch from dataloader then divide the batch by domains
    """
    list_all = np.random.permutation(num_domain)
    list_mtrain = list(list_all[:num_domain // 2])
    batch = next(meta_dataloader_iter)
    domain_idx = batch[2]
    cnt = 0
    for sample in list_mtrain:
        if cnt == 0:
            is_mtrain_domain = domain_idx == sample
        else:
            is_mtrain_domain = paddle.logical_or(is_mtrain_domain,
                                                 domain_idx == sample)
        cnt += 1

    # mtrain_batch
    if not any(is_mtrain_domain):
        mtrain_batch = None
        raise RuntimeError
    else:
        mtrain_batch = dict()
        mtrain_batch = [batch[i][is_mtrain_domain] for i in range(len(batch))]

    # mtest_batch
    is_mtest_domains = is_mtrain_domain == False
    if not any(is_mtest_domains):
        mtest_batch = None
        raise RuntimeError
    else:
        mtest_batch = dict()
        mtest_batch = [batch[i][is_mtest_domains] for i in range(len(batch))]
    return mtrain_batch, mtest_batch


def forward(engine, batch, loss_func):
    batch_info = defaultdict()
    batch_info = {"label": batch[1], "domain": batch[2]}
    amp_level = engine.config["AMP"].get("level", "O1").upper()
    with paddle.amp.auto_cast(
            custom_black_list={"flatten_contiguous_range", "greater_than"},
            level=amp_level):
        out = engine.model(batch[0], batch[1])
        loss_dict = loss_func(out, batch_info)
    return out, loss_dict


def backward(engine, loss, optimizer):
    scaled = engine.scaler.scale(loss)
    scaled.backward()
    engine.scaler.minimize(optimizer, scaled)
    for layer in engine.model.sublayers():
        if isinstance(layer, BINGate):
            layer.clip_gate()


def basic_update(engine, batch):
    setup_opt(engine, "train")
    train_loss_func = build_loss(engine.config["Loss"]["Basic"])
    out, train_loss_dict = forward(engine, batch, train_loss_func)
    train_loss = train_loss_dict["loss"]
    backward(engine, train_loss, engine.optimizer[0])
    engine.optimizer[0].clear_grad()
    reset_opt(engine.model)
    return out, train_loss_dict


def metalearning_update(engine, mtrain_batch, mtest_batch):
    # meta train
    mtrain_loss_func = build_loss(engine.config["Loss"]["MetaTrain"])
    setup_opt(engine, "mtrain")

    mtrain_batch_info = defaultdict()
    mtrain_batch_info = {"label": mtrain_batch[1], "domain": mtrain_batch[2]}
    out = engine.model(mtrain_batch[0], mtrain_batch[1])
    mtrain_loss_dict = mtrain_loss_func(out, mtrain_batch_info)
    mtrain_loss = mtrain_loss_dict["loss"]
    engine.optimizer[1].clear_grad()
    mtrain_loss.backward()

    # meta test
    mtest_loss_func = build_loss(engine.config["Loss"]["MetaTest"])
    setup_opt(engine, "mtest")

    out, mtest_loss_dict = forward(engine, mtest_batch, mtest_loss_func)
    engine.optimizer[1].clear_grad()
    mtest_loss = mtest_loss_dict["loss"]
    backward(engine, mtest_loss, engine.optimizer[1])

    engine.optimizer[0].clear_grad()
    engine.optimizer[1].clear_grad()
    reset_opt(engine.model)

    return mtrain_loss_dict, mtest_loss_dict