quick_start_recognition.md 13.7 KB
Newer Older
1 2
# 图像识别快速开始

L
littletomatodonkey 已提交
3
本文档包含3个部分:环境配置、图像识别体验、未知类别的图像识别体验。
4

L
littletomatodonkey 已提交
5
如果图像类别已经存在于图像索引库中,那么可以直接参考[图像识别体验](#图像识别体验)章节,完成图像识别过程;如果希望识别未知类别的图像,即图像类别之前不存在于索引库中,那么可以参考[未知类别的图像识别体验](#未知类别的图像识别体验)章节,完成建立索引并识别的过程。
6

L
littletomatodonkey 已提交
7
## 目录
8

L
littletomatodonkey 已提交
9 10 11
* [1. 环境配置](#环境配置)
* [2. 图像识别体验](#图像识别体验)
  * [2.1 下载、解压inference 模型与demo数据](#下载、解压inference_模型与demo数据)
12
  * [2.2 商品别与检索](#商品识别与检索)
L
littletomatodonkey 已提交
13 14 15
    * [2.2.1 识别单张图像](#识别单张图像)
    * [2.2.2 基于文件夹的批量识别](#基于文件夹的批量识别)
* [3. 未知类别的图像识别体验](#未知类别的图像识别体验)
L
littletomatodonkey 已提交
16 17 18
  * [3.1 准备新的数据与标签](#准备新的数据与标签)
  * [3.2 建立新的索引库](#建立新的索引库)
  * [3.3 基于新的索引库的图像识别](#基于新的索引库的图像识别)
19

20

L
littletomatodonkey 已提交
21 22
<a name="环境配置"></a>
## 1. 环境配置
23

L
littletomatodonkey 已提交
24
* 安装:请先参考[快速安装](./install.md)配置PaddleClas运行环境。
25

L
littletomatodonkey 已提交
26
* 进入`deploy`运行目录。本部分所有内容与命令均需要在`deploy`目录下运行,可以通过下面的命令进入`deploy`目录。
27

L
littletomatodonkey 已提交
28 29 30
  ```
  cd deploy
  ```
31

L
littletomatodonkey 已提交
32 33
<a name="图像识别体验"></a>
## 2. 图像识别体验
34

L
littletomatodonkey 已提交
35
检测模型与4个方向(Logo、动漫人物、车辆、商品)的识别inference模型、测试数据下载地址以及对应的配置文件地址如下。
36

37 38 39 40 41 42 43
| 模型简介       | 推荐场景   | inference模型  | 预测配置文件  | 构建索引库的配置文件 |
| ------------  | ------------- | -------- | ------- | -------- |
| 通用主体检测模型 | 通用场景  |[模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar) | - | - |
| Logo识别模型 | Logo场景  | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/logo_rec_ResNet50_Logo3K_v1.0_infer.tar) | [inference_logo.yaml](../../../deploy/configs/inference_logo.yaml) | [build_logo.yaml](../../../deploy/configs/build_logo.yaml) |
| 动漫人物识别模型 | 动漫人物场景  | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/cartoon_rec_ResNet50_iCartoon_v1.0_infer.tar) | [inference_cartoon.yaml](../../../deploy/configs/inference_cartoon.yaml) | [build_cartoon.yaml](../../../deploy/configs/build_cartoon.yaml) |
| 车辆细分类模型 | 车辆场景  |  [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/vehicle_cls_ResNet50_CompCars_v1.0_infer.tar) | [inference_vehicle.yaml](../../../deploy/configs/inference_vehicle.yaml) | [build_vehicle.yaml](../../../deploy/configs/build_vehicle.yaml) |
| 商品识别模型 | 商品场景  |  [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar) | [inference_product.yaml](../../../deploy/configs/inference_product.yaml) | [build_product.yaml](../../../deploy/configs/build_product.yaml) |
D
dongshuilong 已提交
44
| 车辆ReID模型 | 车辆ReID场景 | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/vehicle_reid_ResNet50_VERIWild_v1.0_infer.tar) | - | - |
45 46


D
dongshuilong 已提交
47
本章节demo数据下载地址如下: [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/recognition_demo_data_v1.1.tar)
48 49


50 51 52 53 54 55 56 57 58 59 60 61 62 63
**注意**
1. windows 环境下如果没有安装wget,可以按照下面的步骤安装wget与tar命令,也可以在,下载模型时将链接复制到浏览器中下载,并解压放置在相应目录下;linux或者macOS用户可以右键点击,然后复制下载链接,即可通过`wget`命令下载。
2. 如果macOS环境下没有安装`wget`命令,可以运行下面的命令进行安装。

```shell
# 安装 homebrew
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)";
# 安装wget
brew install wget
```

3. 如果希望在windows环境下安装wget,可以参考:[链接](https://www.cnblogs.com/jeshy/p/10518062.html);如果希望在windows环境中安装tar命令,可以参考:[链接](https://www.cnblogs.com/chooperman/p/14190107.html)


L
littletomatodonkey 已提交
64
* 可以按照下面的命令下载并解压数据与模型
65 66 67 68 69

```shell
mkdir models
cd models
# 下载识别inference模型并解压
L
littletomatodonkey 已提交
70
wget {模型下载链接地址} && tar -xf {压缩包的名称}
71
cd ..
72 73 74

# 下载demo数据并解压
wget {数据下载链接地址} && tar -xf {压缩包的名称}
75 76 77
```


L
littletomatodonkey 已提交
78 79 80
<a name="下载、解压inference_模型与demo数据"></a>
### 2.1 下载、解压inference 模型与demo数据

81
以商品识别为例,下载demo数据集以及通用检测、识别模型,命令如下。
82 83 84 85 86 87

```shell
mkdir models
cd models
# 下载通用检测inference模型并解压
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar && tar -xf ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar
L
littletomatodonkey 已提交
88
# 下载识别inference模型并解压
L
littletomatodonkey 已提交
89
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar && tar -xf product_ResNet50_vd_aliproduct_v1.0_infer.tar
90

91
cd ../
92 93
# 下载demo数据并解压
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/recognition_demo_data_v1.0.tar && tar -xf recognition_demo_data_v1.0.tar
94 95
```

96
解压完毕后,`recognition_demo_data_v1.0`文件夹下应有如下文件结构:
97 98

```
99 100 101 102 103 104 105 106 107
├── recognition_demo_data_v1.0
│   ├── gallery_cartoon
│   ├── gallery_logo
│   ├── gallery_product
│   ├── gallery_vehicle
│   ├── test_cartoon
│   ├── test_logo
│   ├── test_product
│   └── test_vehicle
108 109 110
├── ...
```

111 112
其中`gallery_xxx`文件夹中存放的是用于构建索引库的原始图像,`test_xxx`文件夹中存放的是用于测试识别效果的图像列表。

L
littletomatodonkey 已提交
113

114 115 116
`models`文件夹下应有如下文件结构:

```
L
littletomatodonkey 已提交
117
├── product_ResNet50_vd_aliproduct_v1.0_infer
118 119 120 121 122 123 124 125 126
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
├── ppyolov2_r50vd_dcn_mainbody_v1.0_infer
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
```

L
littletomatodonkey 已提交
127 128
<a name="商品识别与检索"></a>
### 2.2 商品识别与检索
L
littletomatodonkey 已提交
129

L
littletomatodonkey 已提交
130
以商品识别demo为例,展示识别与检索过程(如果希望尝试其他方向的识别与检索效果,在下载解压好对应的demo数据与模型之后,替换对应的配置文件即可完成预测)。
131 132


L
littletomatodonkey 已提交
133 134
<a name="识别单张图像"></a>
#### 2.2.1 识别单张图像
135

136
运行下面的命令,对图像`./recognition_demo_data_v1.0/test_product/daoxiangcunjinzhubing_6.jpg`进行识别与检索
137

L
littletomatodonkey 已提交
138
```shell
139
# 使用下面的命令使用GPU进行预测
L
littletomatodonkey 已提交
140
python3.7 python/predict_system.py -c configs/inference_product.yaml
141 142
# 使用下面的命令使用CPU进行预测
python3.7 python/predict_system.py -c configs/inference_product.yaml -o Global.use_gpu=False
143 144
```

145 146
注意:这里使用了默认编译生成的库文件进行特征索引,如果与您的环境不兼容,导致程序报错,可以参考[向量检索教程](../../../deploy/vector_search/README.md)重新编译库文件。

L
littletomatodonkey 已提交
147
待检索图像如下所示。
148

L
littletomatodonkey 已提交
149
<div align="center">
150
<img src="../../images/recognition/product_demo/query/daoxiangcunjinzhubing_6.jpg"  width = "400" />
L
littletomatodonkey 已提交
151
</div>
152

L
littletomatodonkey 已提交
153 154

最终输出结果如下。
155 156

```
157
[{'bbox': [287, 129, 497, 326], 'rec_docs': '稻香村金猪饼', 'rec_scores': 0.8309420943260193}, {'bbox': [99, 242, 313, 426], 'rec_docs': '稻香村金猪饼', 'rec_scores': 0.7245652079582214}]
158 159
```

160
其中bbox表示检测出的主体所在位置,rec_docs表示索引库中与检测框最为相似的类别,rec_scores表示对应的置信度。
L
littletomatodonkey 已提交
161

L
littletomatodonkey 已提交
162
检测的可视化结果也保存在`output`文件夹下,对于本张图像,识别结果可视化如下所示。
L
littletomatodonkey 已提交
163 164

<div align="center">
165
<img src="../../images/recognition/product_demo/result/daoxiangcunjinzhubing_6.jpg"  width = "400" />
L
littletomatodonkey 已提交
166 167
</div>

L
littletomatodonkey 已提交
168 169 170 171 172

<a name="基于文件夹的批量识别"></a>
#### 2.2.2 基于文件夹的批量识别

如果希望预测文件夹内的图像,可以直接修改配置文件中的`Global.infer_imgs`字段,也可以通过下面的`-o`参数修改对应的配置。
173 174

```shell
175
# 使用下面的命令使用GPU进行预测,如果希望使用CPU预测,可以在命令后面添加-o Global.use_gpu=False
176
python3.7 python/predict_system.py -c configs/inference_product.yaml -o Global.infer_imgs="./recognition_demo_data_v1.0/test_product/"
177 178
```

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
终端中会输出该文件夹内所有图像的识别结果,如下所示。

```
...
[{'bbox': [37, 29, 123, 89], 'rec_docs': '香奈儿包', 'rec_scores': 0.6163763999938965}, {'bbox': [153, 96, 235, 175], 'rec_docs': '香奈儿包', 'rec_scores': 0.5279821157455444}]
[{'bbox': [735, 562, 1133, 851], 'rec_docs': '香奈儿包', 'rec_scores': 0.5588355660438538}]
[{'bbox': [124, 50, 230, 129], 'rec_docs': '香奈儿包', 'rec_scores': 0.6980369687080383}]
[{'bbox': [0, 0, 275, 183], 'rec_docs': '香奈儿包', 'rec_scores': 0.5818190574645996}]
[{'bbox': [400, 1179, 905, 1537], 'rec_docs': '香奈儿包', 'rec_scores': 0.9814301133155823}]
[{'bbox': [544, 4, 1482, 932], 'rec_docs': '香奈儿包', 'rec_scores': 0.5143815279006958}]
[{'bbox': [29, 42, 194, 183], 'rec_docs': '香奈儿包', 'rec_scores': 0.9543638229370117}]
...
```

所有图像的识别结果可视化图像也保存在`output`文件夹内。


L
littletomatodonkey 已提交
196 197 198 199 200 201
更多地,可以通过修改`Global.rec_inference_model_dir`字段来更改识别inference模型的路径,通过修改`IndexProcess.index_path`字段来更改索引库索引的路径。


<a name="未知类别的图像识别体验"></a>
## 3. 未知类别的图像识别体验

202
对图像`./recognition_demo_data_v1.0/test_product/anmuxi.jpg`进行识别,命令如下
203 204

```shell
205
# 使用下面的命令使用GPU进行预测,如果希望使用CPU预测,可以在命令后面添加-o Global.use_gpu=False
206
python3.7 python/predict_system.py -c configs/inference_product.yaml -o Global.infer_imgs="./recognition_demo_data_v1.0/test_product/anmuxi.jpg"
L
littletomatodonkey 已提交
207 208 209 210 211
```

待检索图像如下所示。

<div align="center">
212
<img src="../../images/recognition/product_demo/query/anmuxi.jpg"  width = "400" />
L
littletomatodonkey 已提交
213 214 215
</div>


216
输出结果为空。
217

L
littletomatodonkey 已提交
218 219 220 221
由于默认的索引库中不包含对应的索引信息,所以这里的识别结果有误,此时我们可以通过构建新的索引库的方式,完成未知类别的图像识别。

当索引库中的图像无法覆盖我们实际识别的场景时,即在预测未知类别的图像时,我们需要将对应类别的相似图像添加到索引库中,从而完成对未知类别的图像识别,这一过程是不需要重新训练的。

L
littletomatodonkey 已提交
222 223 224
<a name="准备新的数据与标签"></a>
### 3.1 准备新的数据与标签

225
首先需要将与待检索图像相似的图像列表拷贝到索引库原始图像的文件夹(`./recognition_demo_data_v1.0/gallery_product/gallery`)中,运行下面的命令拷贝相似图像。
L
littletomatodonkey 已提交
226 227

```shell
228
cp -r  ../docs/images/recognition/product_demo/gallery/anmuxi ./recognition_demo_data_v1.0/gallery_product/gallery/
L
littletomatodonkey 已提交
229 230
```

231
然后需要编辑记录了图像路径和标签信息的文本文件(`./recognition_demo_data_v1.0/gallery_product/data_file_update.txt`),这里基于原始标签文件,新建一个文件。命令如下。
L
littletomatodonkey 已提交
232 233 234

```shell
# 复制文件
235
cp recognition_demo_data_v1.0/gallery_product/data_file.txt recognition_demo_data_v1.0/gallery_product/data_file_update.txt
L
littletomatodonkey 已提交
236 237
```

238
然后在文件`recognition_demo_data_v1.0/gallery_product/data_file_update.txt`中添加以下的信息,
L
littletomatodonkey 已提交
239 240

```
D
dongshuilong 已提交
241 242 243 244 245 246
gallery/anmuxi/001.jpg	安慕希酸奶
gallery/anmuxi/002.jpg	安慕希酸奶
gallery/anmuxi/003.jpg	安慕希酸奶
gallery/anmuxi/004.jpg	安慕希酸奶
gallery/anmuxi/005.jpg	安慕希酸奶
gallery/anmuxi/006.jpg	安慕希酸奶
L
littletomatodonkey 已提交
247 248
```

249
每一行的文本中,第一个字段表示图像的相对路径,第二个字段表示图像对应的标签信息,中间用`tab`键分隔开(注意:有些编辑器会将`tab`自动转换为`空格`,这种情况下会导致文件解析报错)。
L
littletomatodonkey 已提交
250

251

L
littletomatodonkey 已提交
252 253
<a name="建立新的索引库"></a>
### 3.2 建立新的索引库
L
littletomatodonkey 已提交
254

L
littletomatodonkey 已提交
255
使用下面的命令构建index索引,加速识别后的检索过程。
L
littletomatodonkey 已提交
256 257

```shell
258
python3.7 python/build_gallery.py -c configs/build_product.yaml -o IndexProcess.data_file="./recognition_demo_data_v1.0/gallery_product/data_file_update.txt" -o IndexProcess.index_path="./recognition_demo_data_v1.0/gallery_product/index_update"
259 260
```

261
最终新的索引信息保存在文件夹`./recognition_demo_data_v1.0/gallery_product/index_update`中。
262 263


L
littletomatodonkey 已提交
264
<a name="基于新的索引库的图像识别"></a>
L
littletomatodonkey 已提交
265
### 3.3 基于新的索引库的图像识别
266

L
littletomatodonkey 已提交
267
使用新的索引库,对上述图像进行识别,运行命令如下。
268

L
littletomatodonkey 已提交
269
```shell
270
# 使用下面的命令使用GPU进行预测,如果希望使用CPU预测,可以在命令后面添加-o Global.use_gpu=False
271
python3.7 python/predict_system.py -c configs/inference_product.yaml -o Global.infer_imgs="./recognition_demo_data_v1.0/test_product/anmuxi.jpg" -o IndexProcess.index_path="./recognition_demo_data_v1.0/gallery_product/index_update"
L
littletomatodonkey 已提交
272 273 274 275 276
```

输出结果如下。

```
277
[{'bbox': [243, 80, 523, 522], 'rec_docs': '安慕希酸奶', 'rec_scores': 0.5570770502090454}]
L
littletomatodonkey 已提交
278
```
279

L
littletomatodonkey 已提交
280
最终识别结果为`安慕希酸奶`,识别正确,识别结果可视化如下所示。
281 282 283 284

<div align="center">
<img src="../../images/recognition/product_demo/result/anmuxi.jpg"  width = "400" />
</div>