README_cn.md 37.9 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9
简体中文 | [English](README.md)

# PaddleClas

## 简介

飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。

**近期更新**
littletomatodonkey's avatar
littletomatodonkey 已提交
10
- 2020.10.10 添加cpp inference demo,完善`FAQ 30问`教程。
C
cuicheng01 已提交
11 12 13
- 2020.09.17 添加 `HRNet_W48_C_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.62%;添加 `ResNet34_vd_ssld `模型,在ImageNet-1k上Top-1 Acc可达79.72%。
- 2020.09.07 添加 `HRNet_W18_C_ssld `模型,在ImageNet-1k上Top-1 Acc可达81.16%;添加 `MobileNetV3_small_x0_35_ssld `模型,在ImageNet-1k上Top-1 Acc可达55.55%。
- 2020.07.14 添加 `Res2Net200_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达85.13%;添加 `Fix_ResNet50_vd_ssld_v2 `模型,在ImageNet-1k上Top-1 Acc可达84.0%。
littletomatodonkey's avatar
littletomatodonkey 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26
- 2020.06.17 添加英文文档。
- 2020.06.12 添加对windows和CPU环境的训练与评估支持。
- [more](./docs/zh_CN/update_history.md)


## 特性

- 丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了24个系列的分类网络结构和训练配置,122个预训练模型和性能评估。

- SSLD知识蒸馏:基于该方案蒸馏模型的识别准确率普遍提升3%以上。

- 数据增广:支持AutoAugment、Cutout、Cutmix等8种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。

C
cuicheng01 已提交
27
- 10万类图像分类预训练模型:百度自研并开源了基于10万类数据集训练的 `ResNet50_vd `模型,在一些实际场景中,使用该预训练模型的识别准确率最多可以提升30%。
littletomatodonkey's avatar
littletomatodonkey 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

- 多种训练方案,包括多机训练、混合精度训练等。

- 多种预测推理、部署方案,包括TensorRT预测、Paddle-Lite预测、模型服务化部署、模型量化、Paddle Hub等。

- 可运行于Linux、Windows、MacOS等多种系统。


## 文档教程

- [快速安装](./docs/zh_CN/tutorials/install.md)
- [30分钟玩转PaddleClas](./docs/zh_CN/tutorials/quick_start.md)
- [模型库介绍和预训练模型](./docs/zh_CN/models/models_intro.md)
    - [模型库概览图](#模型库概览图)
    - [ResNet及其Vd系列](#ResNet及其Vd系列)
    - [移动端系列](#移动端系列)
    - [SEResNeXt与Res2Net系列](#SEResNeXt与Res2Net系列)
    - [DPN与DenseNet系列](#DPN与DenseNet系列)
    - [HRNet](HRNet系列)
    - [Inception系列](#Inception系列)
    - [EfficientNet与ResNeXt101_wsl系列](#EfficientNet与ResNeXt101_wsl系列)
    - [ResNeSt与RegNet系列](#ResNeSt与RegNet系列)
- 模型训练/评估
    - [数据准备](./docs/zh_CN/tutorials/data.md)
    - [模型训练与微调](./docs/zh_CN/tutorials/getting_started.md)
    - [模型评估](./docs/zh_CN/tutorials/getting_started.md)
- 模型预测
    - [基于训练引擎预测推理](./docs/zh_CN/extension/paddle_inference.md)
    - [基于Python预测引擎预测推理](./docs/zh_CN/extension/paddle_inference.md)
    - 基于C++预测引擎预测推理(coming soon)
    - [服务化部署](./docs/zh_CN/extension/paddle_serving.md)
    - 端侧部署(coming soon)
    - [模型量化压缩](docs/zh_CN/extension/paddle_quantization.md)
- 高阶使用
    - [知识蒸馏](./docs/zh_CN/advanced_tutorials/distillation/distillation.md)
    - [数据增广](./docs/zh_CN/advanced_tutorials/image_augmentation/ImageAugment.md)
- 特色拓展应用
    - [迁移学习](./docs/zh_CN/application/transfer_learning.md)
    - [10万类图像分类预训练模型](./docs/zh_CN/application/transfer_learning.md)
    - [通用目标检测](./docs/zh_CN/application/object_detection.md)
- FAQ
littletomatodonkey's avatar
littletomatodonkey 已提交
69
    - [图像分类通用问题](./docs/zh_CN/faq.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    - [PaddleClas实战FAQ](./docs/zh_CN/faq.md)
- [赛事支持](./docs/zh_CN/competition_support.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)


## 模型库

<a name="模型库概览图"></a>
### 模型库概览图

基于ImageNet1k分类数据集,PaddleClas支持24种系列分类网络结构以及对应的122个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* CPU的评估环境基于骁龙855(SD855)。
* GPU评估环境基于T4机器,在FP32+TensorRT配置下运行500次测得(去除前10次的warmup时间)。

常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。

![](./docs/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png)


常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。

![](./docs/images/models/mobile_arm_storage.png)

![](./docs/images/models/mobile_arm_top1.png)


<a name="ResNet及其Vd系列"></a>
### ResNet及其Vd系列

ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet及其Vd系列模型文档](./docs/zh_CN/models/ResNet_and_vd.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
| ResNet18            | 0.7098    | 0.8992    | 1.45606               | 3.56305              | 3.66     | 11.69     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)            |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.54557               | 3.85363              | 4.14     | 11.71     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar)         |
| ResNet34            | 0.7457    | 0.9214    | 2.34957               | 5.89821              | 7.36     | 21.8      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)            |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.43427               | 6.22257              | 7.39     | 21.82     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar)         |
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.43427               | 6.22257              | 7.39     | 21.82     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar)         |
| ResNet50            | 0.7650    | 0.9300    | 3.47712               | 7.84421              | 8.19     | 25.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)            |
| ResNet50_vc         | 0.7835    | 0.9403    | 3.52346               | 8.10725              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar)         |
| ResNet50_vd         | 0.7912    | 0.9444    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar)         |
| ResNet50_vd_v2      | 0.7984    | 0.9493    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar)      |
| ResNet101           | 0.7756    | 0.9364    | 6.07125               | 13.40573             | 15.52    | 44.55     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar)           |
| ResNet101_vd        | 0.8017    | 0.9497    | 6.11704               | 13.76222             | 16.1     | 44.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)        |
| ResNet152           | 0.7826    | 0.9396    | 8.50198               | 19.17073             | 23.05    | 60.19     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar)           |
| ResNet152_vd        | 0.8059    | 0.9530    | 8.54376               | 19.52157             | 23.53    | 60.21     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar)        |
| ResNet200_vd        | 0.8093    | 0.9533    | 10.80619              | 25.01731             | 30.53    | 74.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar)        |
| ResNet50_vd_<br>ssld    | 0.8239    | 0.9610    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar)    |
| ResNet50_vd_<br>ssld_v2 | 0.8300    | 0.9640    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 6.11704               | 13.76222             | 16.1     | 44.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)   |


<a name="移动端系列"></a>
### 移动端系列

移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](./docs/zh_CN/models/Mobile.md)

| 模型                               | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址                                                                                                      |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 3.21985                | 0.07     | 0.46      | 1.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar)                |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 9.579599               | 0.28     | 1.31      | 5.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar)                 |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 19.436399              | 0.63     | 2.55      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar)                |
| MobileNetV1                      | 0.7099    | 0.8968    | 32.523048              | 1.11     | 4.19      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar)                      |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 32.523048              | 1.11     | 4.19      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar)                 |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.79925                | 0.05     | 1.5       | 6.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar)                |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 8.7021                 | 0.17     | 1.93      | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar)                 |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 15.531351              | 0.35     | 2.58      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar)                |
| MobileNetV2                      | 0.7215    | 0.9065    | 23.317699              | 0.6      | 3.44      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar)                      |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 45.623848              | 1.32     | 6.76      | 26      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar)                 |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 74.291649              | 2.32     | 11.13     | 43      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar)                 |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 23.317699              | 0.6      | 3.44      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar)                 |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 28.217701              | 0.714    | 7.44      | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 19.30835               | 0.45     | 5.47      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)           |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 13.5646                | 0.296    | 3.91      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar)          |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 7.49315                | 0.138    | 2.67      | 11      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar)           |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 5.13695                | 0.077    | 2.1       | 8.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 9.2745                 | 0.195    | 3.62      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar)          |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 6.5463                 | 0.123    | 2.94      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar)           |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 5.28435                | 0.088    | 2.37      | 9.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar)          |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 3.35165                | 0.043    | 1.9       | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar)           |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.6352                 | 0.026    | 1.66      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.6352                 | 0.026    | 1.66      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_ssld_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 19.30835               | 0.45     | 5.47      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)      |
| MobileNetV3_large_<br>x1_0_ssld_int8 | 0.7605    |     -      | 14.395                 |    -     |      -     | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 6.5463                 | 0.123    | 2.94      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar)      |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 10.941                 | 0.28     | 2.26      | 9       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar)                     |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 2.329                  | 0.03     | 0.6       | 2.7     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar)               |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.64335                | 0.04     | 0.64      | 2.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar)               |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 4.2613                 | 0.08     | 1.36      | 5.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar)                |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 19.3522                | 0.58     | 3.47      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar)                |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 34.770149              | 1.12     | 7.32      | 28      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar)                |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 16.023151              | 0.29     | 2.26      | 9.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar)               |
| DARTS_GS_4M                      | 0.7523    | 0.9215    | 47.204948              | 1.04     | 4.77      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar)                      |
| DARTS_GS_6M                      | 0.7603    | 0.9279    | 53.720802              | 1.22     | 5.69      | 24      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar)                      |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.7143                 | 0.082    | 2.6       | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams)               |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 13.5587                | 0.294    | 5.2       | 20      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams)               |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.9825                | 0.44     | 7.3       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams)               |


<a name="SEResNeXt与Res2Net系列"></a>
### SEResNeXt与Res2Net系列

SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt与Res2Net系列模型文档](./docs/zh_CN/models/SEResNext_and_Res2Net.md)


| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 4.47188               | 9.65722              | 8.52     | 25.7      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar)          |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 4.52712               | 9.93247              | 8.37     | 25.06     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar)       |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 5.4026                | 10.60273             | 9.01     | 25.72     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar)          |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 8.08729               | 17.31208             | 16.67    | 45.22     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 14.67806              | 32.35032             | 31.49    | 76.21     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 14.67806              | 32.35032             | 31.49    | 76.21     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar) |
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 7.56327               | 10.6134              | 8.02     | 23.64     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 7.62044               | 11.03385             | 8.5      | 23.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar)        |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 13.80962              | 18.4712              | 15.06    | 42.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 13.94449              | 18.88759             | 15.54    | 42.38     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar)        |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 16.21503              | 19.96568             | 15.01    | 41.54     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 16.28103              | 20.25611             | 15.49    | 41.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar)       |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 30.4788               | 36.29801             | 29.05    | 78.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 30.40456              | 36.77324             | 29.53    | 78.14     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar)       |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 24.86299              | 29.36764             | 22.01    | 56.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 25.03258              | 30.08987             | 22.49    | 56.3      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar)       |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 46.7564               | 56.34108             | 43.03    | 107.57    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 47.18638              | 57.16257             | 43.52    | 107.59    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar)       |
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.7691                | 4.19877              | 4.14     | 11.8      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar)            |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.88559               | 7.03291              | 7.84     | 21.98     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar)            |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 4.28393               | 10.38846             | 8.67     | 28.09     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar)            |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 8.74121               | 13.563               | 8.02     | 26.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar)        |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 9.17134               | 14.76192             | 10.76    | 26.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar)     |
| SE_ResNeXt101_<br>32x4d       | 0.7912    | 0.9420    | 18.82604              | 25.31814             | 15.02    | 46.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar)       |
| SENet154_vd               | 0.8140    | 0.9548    | 53.79794              | 66.31684             | 45.83    | 114.29    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar)               |


<a name="DPN与DenseNet系列"></a>
### DPN与DenseNet系列

DPN与DenseNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN与DenseNet系列模型文档](./docs/zh_CN/models/DPN_DenseNet.md)


| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
| DenseNet121 | 0.7566    | 0.9258    | 4.40447               | 9.32623              | 5.69     | 7.98      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 10.39152              | 22.15555             | 15.49    | 28.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 6.43598               | 12.98832             | 6.74     | 14.15     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 8.20652               | 17.45838             | 8.61     | 20.01     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 12.14722              | 26.27707             | 11.54    | 33.37     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) |
| DPN68       | 0.7678    | 0.9343    | 11.64915              | 12.82807             | 4.03     | 10.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar)       |
| DPN92       | 0.7985    | 0.9480    | 18.15746              | 23.87545             | 12.54    | 36.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar)       |
| DPN98       | 0.8059    | 0.9510    | 21.18196              | 33.23925             | 22.22    | 58.46     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar)       |
| DPN107      | 0.8089    | 0.9532    | 27.62046              | 52.65353             | 35.06    | 82.97     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar)      |
| DPN131      | 0.8070    | 0.9514    | 28.33119              | 46.19439             | 30.51    | 75.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar)      |



<a name="HRNet系列"></a>
### HRNet系列

HRNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet系列模型文档](./docs/zh_CN/models/HRNet.md)


| 模型          | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692    | 0.9339    | 7.40636          | 13.29752         | 4.14     | 21.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) |
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 7.40636          | 13.29752         | 4.14     | 21.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) |
| HRNet_W30_C | 0.7804    | 0.9402    | 9.57594          | 17.35485         | 16.23    | 37.71     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 9.49807          | 17.72921         | 17.86    | 41.23     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 12.12202         | 25.68184         | 25.41    | 57.55     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 13.19858         | 32.25202         | 29.79    | 67.06     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 13.70761         | 34.43572         | 34.58    | 77.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 13.70761         | 34.43572         | 34.58    | 77.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
| HRNet_W64_C | 0.7930    | 0.9461    | 17.57527         | 47.9533          | 57.83    | 128.06    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) |


<a name="Inception系列"></a>
### Inception系列

Inception系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception系列模型文档](./docs/zh_CN/models/Inception.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
| GoogLeNet          | 0.7070    | 0.8966    | 1.88038               | 4.48882              | 2.88     | 8.46      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar)          |
| Xception41         | 0.7930    | 0.9453    | 4.96939               | 17.01361             | 16.74    | 22.69     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar)         |
| Xception41_deeplab | 0.7955    | 0.9438    | 5.33541               | 17.55938             | 18.16    | 26.73     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) |
| Xception65         | 0.8100    | 0.9549    | 7.26158               | 25.88778             | 25.95    | 35.48     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar)         |
| Xception65_deeplab | 0.8032    | 0.9449    | 7.60208               | 26.03699             | 27.37    | 39.52     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) |
| Xception71         | 0.8111    | 0.9545    | 8.72457               | 31.55549             | 31.77    | 37.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar)         |
| InceptionV4        | 0.8077    | 0.9526    | 12.99342              | 25.23416             | 24.57    | 42.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar)        |


<a name="EfficientNet与ResNeXt101_wsl系列"></a>
### EfficientNet与ResNeXt101_wsl系列

EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet与ResNeXt101_wsl系列模型文档](./docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md)


| 模型                        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                               |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 18.52528         | 34.25319         | 29.14    | 78.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar)      |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 25.60395         | 71.88384         | 57.55    | 152.66    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 54.87396         | 160.04337        | 115.17   | 303.11    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 99.01698256      | 315.91261        | 173.58   | 456.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar)     |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 160.0838242      | 595.99296        | 354.23   | 456.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) |
| EfficientNetB0            | 0.7738    | 0.9331    | 3.442            | 6.11476          | 0.72     | 5.1       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar)            |
| EfficientNetB1            | 0.7915    | 0.9441    | 5.3322           | 9.41795          | 1.27     | 7.52      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar)            |
| EfficientNetB2            | 0.7985    | 0.9474    | 6.29351          | 10.95702         | 1.85     | 8.81      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar)            |
| EfficientNetB3            | 0.8115    | 0.9541    | 7.67749          | 16.53288         | 3.43     | 11.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar)            |
| EfficientNetB4            | 0.8285    | 0.9623    | 12.15894         | 30.94567         | 8.29     | 18.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar)            |
| EfficientNetB5            | 0.8362    | 0.9672    | 20.48571         | 61.60252         | 19.51    | 29.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar)            |
| EfficientNetB6            | 0.8400    | 0.9688    | 32.62402         | -                | 36.27    | 42        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar)            |
| EfficientNetB7            | 0.8430    | 0.9689    | 53.93823         | -                | 72.35    | 64.92     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar)            |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 2.3076           | 4.71886          | 0.72     | 4.65      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar)      |


<a name="ResNeSt与RegNet系列"></a>
### ResNeSt与RegNet系列

ResNeSt与RegNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt与RegNet系列模型文档](./docs/zh_CN/models/ResNeSt_RegNet.md)


| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                                 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 3.45405                | 8.72680                | 8.68     | 26.3      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
| ResNeSt50              | 0.8102    | 0.9542    | 6.69042    | 8.01664                | 10.78    | 27.5      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams)              |
| RegNetX_4GF            | 0.785     | 0.9416    |    6.46478              |      11.19862           | 8        | 22.1      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams)            |


<a name="许可证书"></a>
## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>许可认证。


<a name="贡献代码"></a>
## 贡献代码
我们非常欢迎你为PaddleClas贡献代码,也十分感谢你的反馈。

- 非常感谢[nblib](https://github.com/nblib)修正了PaddleClas中RandErasing的数据增广配置文件。
- 非常感谢[chenpy228](https://github.com/chenpy228)修正了PaddleClas文档中的部分错别字。