utils.py 2.8 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function

import datetime
from ppcls.utils import logger
from ppcls.utils.misc import AverageMeter


def update_metric(trainer, out, batch, batch_size):
    # calc metric
    if trainer.train_metric_func is not None:
        metric_dict = trainer.train_metric_func(out, batch[-1])
        for key in metric_dict:
            if key not in trainer.output_info:
                trainer.output_info[key] = AverageMeter(key, '7.5f')
            trainer.output_info[key].update(metric_dict[key].numpy()[0],
                                            batch_size)


def update_loss(trainer, loss_dict, batch_size):
    # update_output_info
    for key in loss_dict:
        if key not in trainer.output_info:
            trainer.output_info[key] = AverageMeter(key, '7.5f')
D
dongshuilong 已提交
37
        trainer.output_info[key].update(loss_dict[key].numpy()[0], batch_size)
D
dongshuilong 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


def log_info(trainer, batch_size, epoch_id, iter_id):
    lr_msg = "lr: {:.5f}".format(trainer.lr_sch.get_lr())
    metric_msg = ", ".join([
        "{}: {:.5f}".format(key, trainer.output_info[key].avg)
        for key in trainer.output_info
    ])
    time_msg = "s, ".join([
        "{}: {:.5f}".format(key, trainer.time_info[key].avg)
        for key in trainer.time_info
    ])

    ips_msg = "ips: {:.5f} images/sec".format(
        batch_size / trainer.time_info["batch_cost"].avg)
    eta_sec = ((trainer.config["Global"]["epochs"] - epoch_id + 1
                ) * len(trainer.train_dataloader) - iter_id
               ) * trainer.time_info["batch_cost"].avg
    eta_msg = "eta: {:s}".format(str(datetime.timedelta(seconds=int(eta_sec))))
    logger.info("[Train][Epoch {}/{}][Iter: {}/{}]{}, {}, {}, {}, {}".format(
        epoch_id, trainer.config["Global"]["epochs"], iter_id,
        len(trainer.train_dataloader), lr_msg, metric_msg, time_msg, ips_msg,
        eta_msg))

    logger.scaler(
        name="lr",
        value=trainer.lr_sch.get_lr(),
        step=trainer.global_step,
        writer=trainer.vdl_writer)
    for key in trainer.output_info:
        logger.scaler(
            name="train_{}".format(key),
            value=trainer.output_info[key].avg,
            step=trainer.global_step,
            writer=trainer.vdl_writer)