train.py 2.9 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function

import time
import paddle
from ppcls.engine.train.utils import update_loss, update_metric, log_info


W
weishengyu 已提交
21
def train_epoch(engine, epoch_id, print_batch_step):
D
dongshuilong 已提交
22
    tic = time.time()
W
weishengyu 已提交
23 24
    for iter_id, batch in enumerate(engine.train_dataloader):
        if iter_id >= engine.max_iter:
D
dongshuilong 已提交
25 26
            break
        if iter_id == 5:
W
weishengyu 已提交
27 28 29 30
            for key in engine.time_info:
                engine.time_info[key].reset()
        engine.time_info["reader_cost"].update(time.time() - tic)
        if engine.use_dali:
D
dongshuilong 已提交
31 32 33 34 35 36 37
            batch = [
                paddle.to_tensor(batch[0]['data']),
                paddle.to_tensor(batch[0]['label'])
            ]
        batch_size = batch[0].shape[0]
        batch[1] = batch[1].reshape([-1, 1]).astype("int64")

W
weishengyu 已提交
38
        engine.global_step += 1
D
dongshuilong 已提交
39
        # image input
W
weishengyu 已提交
40
        if engine.amp:
D
dongshuilong 已提交
41 42 43
            with paddle.amp.auto_cast(custom_black_list={
                    "flatten_contiguous_range", "greater_than"
            }):
W
weishengyu 已提交
44 45
                out = forward(engine, batch)
                loss_dict = engine.train_loss_func(out, batch[1])
D
dongshuilong 已提交
46
        else:
W
weishengyu 已提交
47
            out = forward(engine, batch)
D
dongshuilong 已提交
48 49

        # calc loss
W
weishengyu 已提交
50
        if engine.config["DataLoader"]["Train"]["dataset"].get(
D
dongshuilong 已提交
51
                "batch_transform_ops", None):
W
weishengyu 已提交
52
            loss_dict = engine.train_loss_func(out, batch[1:])
D
dongshuilong 已提交
53
        else:
W
weishengyu 已提交
54
            loss_dict = engine.train_loss_func(out, batch[1])
D
dongshuilong 已提交
55 56

        # step opt and lr
W
weishengyu 已提交
57 58
        if engine.amp:
            scaled = engine.scaler.scale(loss_dict["loss"])
D
dongshuilong 已提交
59
            scaled.backward()
W
weishengyu 已提交
60
            engine.scaler.minimize(engine.optimizer, scaled)
D
dongshuilong 已提交
61 62
        else:
            loss_dict["loss"].backward()
W
weishengyu 已提交
63 64 65
            engine.optimizer.step()
        engine.optimizer.clear_grad()
        engine.lr_sch.step()
D
dongshuilong 已提交
66 67 68

        # below code just for logging
        # update metric_for_logger
W
weishengyu 已提交
69
        update_metric(engine, out, batch, batch_size)
D
dongshuilong 已提交
70
        # update_loss_for_logger
W
weishengyu 已提交
71 72
        update_loss(engine, loss_dict, batch_size)
        engine.time_info["batch_cost"].update(time.time() - tic)
D
dongshuilong 已提交
73
        if iter_id % print_batch_step == 0:
W
weishengyu 已提交
74
            log_info(engine, batch_size, epoch_id, iter_id)
D
dongshuilong 已提交
75
        tic = time.time()
D
dongshuilong 已提交
76

D
dongshuilong 已提交
77

D
dongshuilong 已提交
78
def forward(trainer, batch):
D
dongshuilong 已提交
79
    if not trainer.is_rec:
D
dongshuilong 已提交
80 81 82
        return trainer.model(batch[0])
    else:
        return trainer.model(batch[0], batch[1])