resnet_vd.py 10.3 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
littletomatodonkey's avatar
littletomatodonkey 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

__all__ = [
    "ResNet", "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd",
    "ResNet152_vd", "ResNet200_vd"
]


class ResNet():
littletomatodonkey's avatar
littletomatodonkey 已提交
32 33 34 35 36
    def __init__(self,
                 layers=50,
                 is_3x3=False,
                 postfix_name="",
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
W
WuHaobo 已提交
37 38
        self.layers = layers
        self.is_3x3 = is_3x3
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40 41 42 43 44 45
        self.postfix_name = "" if postfix_name is None else postfix_name
        self.lr_mult_list = lr_mult_list
        assert len(
            self.lr_mult_list
        ) == 5, "lr_mult_list length in ResNet must be 5 but got {}!!".format(
            len(self.lr_mult_list))
        self.curr_stage = 0
W
WuHaobo 已提交
46 47 48 49 50 51

    def net(self, input, class_dim=1000):
        is_3x3 = self.is_3x3
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
52 53
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_filters = [64, 128, 256, 512]
        if is_3x3 == False:
            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
        else:
            conv = self.conv_bn_layer(
                input=input,
                num_filters=32,
                filter_size=3,
                stride=2,
                act='relu',
                name='conv1_1')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=32,
                filter_size=3,
                stride=1,
                act='relu',
                name='conv1_2')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=64,
                filter_size=3,
                stride=1,
                act='relu',
                name='conv1_3')

        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        if layers >= 50:
            for block in range(len(depth)):
littletomatodonkey's avatar
littletomatodonkey 已提交
105
                self.curr_stage += 1
W
WuHaobo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                for i in range(depth[block]):
                    if layers in [101, 152, 200] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        if_first=block == i == 0,
                        name=conv_name)
        else:
            for block in range(len(depth)):
littletomatodonkey's avatar
littletomatodonkey 已提交
122
                self.curr_stage += 1
W
WuHaobo 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        if_first=block == i == 0,
                        name=conv_name)

        pool = fluid.layers.pool2d(
            input=conv, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)

        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=fluid.param_attr.ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
140
                name="fc_0.w_0" + self.postfix_name,
W
WuHaobo 已提交
141
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
littletomatodonkey's avatar
littletomatodonkey 已提交
142
            bias_attr=ParamAttr(name="fc_0.b_0" + self.postfix_name))
W
WuHaobo 已提交
143 144 145 146 147 148 149 150 151 152 153

        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
154
        lr_mult = self.lr_mult_list[self.curr_stage]
W
WuHaobo 已提交
155 156 157 158 159 160 161 162
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
163 164 165
            param_attr=ParamAttr(
                name=name + "_weights" + self.postfix_name,
                learning_rate=lr_mult),
W
WuHaobo 已提交
166 167 168 169 170 171 172 173
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
littletomatodonkey's avatar
littletomatodonkey 已提交
174 175 176 177 178 179
            param_attr=ParamAttr(
                name=bn_name + '_scale' + self.postfix_name,
                learning_rate=lr_mult),
            bias_attr=ParamAttr(
                bn_name + '_offset' + self.postfix_name,
                learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
180 181
            moving_mean_name=bn_name + '_mean' + self.postfix_name,
            moving_variance_name=bn_name + '_variance' + self.postfix_name)
W
WuHaobo 已提交
182 183 184 185 186 187 188 189 190

    def conv_bn_layer_new(self,
                          input,
                          num_filters,
                          filter_size,
                          stride=1,
                          groups=1,
                          act=None,
                          name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
191
        lr_mult = self.lr_mult_list[self.curr_stage]
W
WuHaobo 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        pool = fluid.layers.pool2d(
            input=input,
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)

        conv = fluid.layers.conv2d(
            input=pool,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=1,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
208 209 210
            param_attr=ParamAttr(
                name=name + "_weights" + self.postfix_name,
                learning_rate=lr_mult),
W
WuHaobo 已提交
211 212 213 214 215 216 217 218
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
littletomatodonkey's avatar
littletomatodonkey 已提交
219 220 221 222 223 224 225 226
            param_attr=ParamAttr(
                name=bn_name + '_scale' + self.postfix_name,
                learning_rate=lr_mult),
            bias_attr=ParamAttr(
                bn_name + '_offset' + self.postfix_name,
                learning_rate=lr_mult),
            moving_mean_name=bn_name + '_mean' + self.postfix_name,
            moving_variance_name=bn_name + '_variance' + self.postfix_name)
W
WuHaobo 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

    def shortcut(self, input, ch_out, stride, name, if_first=False):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            if if_first:
                return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
            else:
                return self.conv_bn_layer_new(
                    input, ch_out, 1, stride, name=name)
        elif if_first:
            return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, if_first):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        short = self.shortcut(
            input,
            num_filters * 4,
            stride,
            if_first=if_first,
            name=name + "_branch1")

        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')

    def basic_block(self, input, num_filters, stride, name, if_first):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self.shortcut(
            input,
            num_filters,
            stride,
            if_first=if_first,
            name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def ResNet18_vd():
    model = ResNet(layers=18, is_3x3=True)
    return model


def ResNet34_vd():
    model = ResNet(layers=34, is_3x3=True)
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
304 305
def ResNet50_vd(**args):
    model = ResNet(layers=50, is_3x3=True, **args)
W
WuHaobo 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    return model


def ResNet101_vd():
    model = ResNet(layers=101, is_3x3=True)
    return model


def ResNet152_vd():
    model = ResNet(layers=152, is_3x3=True)
    return model


def ResNet200_vd():
    model = ResNet(layers=200, is_3x3=True)
    return model