optimizer.py 2.0 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid.optimizer as pfopt
import paddle.fluid.regularizer as pfreg

__all__ = ['OptimizerBuilder']


class OptimizerBuilder(object):
    """
    Build optimizer with fluid api in fluid.layers.optimizer,
    such as fluid.layers.optimizer.Momentum()
    https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/optimizer_cn.html
    https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/regularizer_cn.html

    Args:
        function(str): optimizer name of learning rate
        params(dict): parameters used for init the class
        regularizer (dict): parameters used for create regularization
    """

    def __init__(self,
                 function='Momentum',
                 params={'momentum': 0.9},
                 regularizer=None):
        self.function = function
        self.params = params
        # create regularizer
        if regularizer is not None:
            reg_func = regularizer['function'] + 'Decay'
            reg_factor = regularizer['factor']
            reg = getattr(pfreg, reg_func)(reg_factor)
            self.params['regularization'] = reg

W
WuHaobo 已提交
51
    def __call__(self, learning_rate, parameter_list):
W
WuHaobo 已提交
52
        opt = getattr(pfopt, self.function)
W
WuHaobo 已提交
53 54 55
        return opt(learning_rate=learning_rate,
                   parameter_list=parameter_list,
                   **self.params)