SEResNext_and_Res2Net.md 13.5 KB
Newer Older
W
WuHaobo 已提交
1 2 3
# SEResNeXt与Res2Net系列

## 概述
D
dyning 已提交
4
ResNeXt是ResNet的典型变种网络之一,ResNeXt发表于2017年的CVPR会议。在此之前,提升模型精度的方法主要集中在将网络变深或者变宽,这样增加了参数量和计算量,推理速度也会相应变慢。ResNeXt结构提出了通道分组(cardinality)的概念,作者通过实验发现增加通道的组数比增加深度和宽度更有效。其可以在不增加参数复杂度的前提下提高准确率,同时还减少了参数的数量,所以是比较成功的ResNet的变种。
D
dyning 已提交
5 6 7 8

SENet是2017年ImageNet分类比赛的冠军方案,其提出了一个全新的SE结构,该结构可以迁移到任何其他网络中,其通过控制scale的大小,把每个通道间重要的特征增强,不重要的特征减弱,从而让提取的特征指向性更强。

Res2Net是2019年提出的一种全新的对ResNet的改进方案,该方案可以和现有其他优秀模块轻松整合,在不增加计算负载量的情况下,在ImageNet、CIFAR-100等数据集上的测试性能超过了ResNet。Res2Net结构简单,性能优越,进一步探索了CNN在更细粒度级别的多尺度表示能力。Res2Net揭示了一个新的提升模型精度的维度,即scale,其是除了深度、宽度和基数的现有维度之外另外一个必不可少的更有效的因素。该网络在其他视觉任务如目标检测、图像分割等也有相当不错的表现。
littletomatodonkey's avatar
littletomatodonkey 已提交
9

littletomatodonkey's avatar
littletomatodonkey 已提交
10
该系列模型的FLOPS、参数量以及T4 GPU上的FP32预测耗时如下图所示。
littletomatodonkey's avatar
littletomatodonkey 已提交
11 12


littletomatodonkey's avatar
littletomatodonkey 已提交
13
![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png)
littletomatodonkey's avatar
littletomatodonkey 已提交
14

littletomatodonkey's avatar
littletomatodonkey 已提交
15 16 17
![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png)

![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png)
littletomatodonkey's avatar
littletomatodonkey 已提交
18

W
WuHaobo 已提交
19

littletomatodonkey's avatar
littletomatodonkey 已提交
20
目前PaddleClas开源的这三类的预训练模型一共有24个,其指标如图所示,从图中可以看出,在同样Flops和Params下,改进版的模型往往有更高的精度,但是推理速度往往不如ResNet系列。另一方面,Res2Net表现也较为优秀,相比ResNeXt中的group操作、SEResNet中的SE结构操作,Res2Net在相同Flops、Params和推理速度下往往精度更佳。
littletomatodonkey's avatar
littletomatodonkey 已提交
21

W
WuHaobo 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


## 精度、FLOPS和参数量

| Models                | Top1   | Top5   | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| Res2Net50_26w_4s      | 0.793  | 0.946  | 0.780             | 0.936             | 8.520        | 25.700            |
| Res2Net50_vd_26w_4s   | 0.798  | 0.949  |                   |                   | 8.370        | 25.060            |
| Res2Net50_14w_8s      | 0.795  | 0.947  | 0.781             | 0.939             | 9.010        | 25.720            |
| Res2Net101_vd_26w_4s  | 0.806  | 0.952  |                   |                   | 16.670       | 45.220            |
| Res2Net200_vd_26w_4s  | 0.812  | 0.957  |                   |                   | 31.490       | 76.210            |
| ResNeXt50_32x4d       | 0.778  | 0.938  | 0.778             |                   | 8.020        | 23.640            |
| ResNeXt50_vd_32x4d    | 0.796  | 0.946  |                   |                   | 8.500        | 23.660            |
| ResNeXt50_64x4d       | 0.784  | 0.941  |                   |                   | 15.060       | 42.360            |
| ResNeXt50_vd_64x4d    | 0.801  | 0.949  |                   |                   | 15.540       | 42.380            |
| ResNeXt101_32x4d      | 0.787  | 0.942  | 0.788             |                   | 15.010       | 41.540            |
| ResNeXt101_vd_32x4d   | 0.803  | 0.951  |                   |                   | 15.490       | 41.560            |
| ResNeXt101_64x4d      | 0.784  | 0.945  | 0.796             |                   | 29.050       | 78.120            |
| ResNeXt101_vd_64x4d   | 0.808  | 0.952  |                   |                   | 29.530       | 78.140            |
| ResNeXt152_32x4d      | 0.790  | 0.943  |                   |                   | 22.010       | 56.280            |
| ResNeXt152_vd_32x4d   | 0.807  | 0.952  |                   |                   | 22.490       | 56.300            |
| ResNeXt152_64x4d      | 0.795  | 0.947  |                   |                   | 43.030       | 107.570           |
| ResNeXt152_vd_64x4d   | 0.811  | 0.953  |                   |                   | 43.520       | 107.590           |
| SE_ResNet18_vd        | 0.733  | 0.914  |                   |                   | 4.140        | 11.800            |
| SE_ResNet34_vd        | 0.765  | 0.932  |                   |                   | 7.840        | 21.980            |
| SE_ResNet50_vd        | 0.795  | 0.948  |                   |                   | 8.670        | 28.090            |
| SE_ResNeXt50_32x4d    | 0.784  | 0.940  | 0.789             | 0.945             | 8.020        | 26.160            |
| SE_ResNeXt50_vd_32x4d | 0.802  | 0.949  |                   |                   | 10.760       | 26.280            |
| SE_ResNeXt101_32x4d   | 0.791  | 0.942  | 0.793             | 0.950             | 15.020       | 46.280            |
| SENet154_vd           | 0.814  | 0.955  |                   |                   | 45.830       | 114.290           |



littletomatodonkey's avatar
littletomatodonkey 已提交
55
## 基于V100 GPU的预测速度
W
WuHaobo 已提交
56

littletomatodonkey's avatar
littletomatodonkey 已提交
57
| Models                 | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
littletomatodonkey's avatar
littletomatodonkey 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|-----------------------|-----------|-------------------|--------------------------|
| Res2Net50_26w_4s      | 224       | 256               | 4.148                    |
| Res2Net50_vd_26w_4s   | 224       | 256               | 4.172                    |
| Res2Net50_14w_8s      | 224       | 256               | 5.113                    |
| Res2Net101_vd_26w_4s  | 224       | 256               | 7.327                    |
| Res2Net200_vd_26w_4s  | 224       | 256               | 12.806                   |
| ResNeXt50_32x4d       | 224       | 256               | 10.964                   |
| ResNeXt50_vd_32x4d    | 224       | 256               | 7.566                    |
| ResNeXt50_64x4d       | 224       | 256               | 13.905                   |
| ResNeXt50_vd_64x4d    | 224       | 256               | 14.321                   |
| ResNeXt101_32x4d      | 224       | 256               | 14.915                   |
| ResNeXt101_vd_32x4d   | 224       | 256               | 14.885                   |
| ResNeXt101_64x4d      | 224       | 256               | 28.716                   |
| ResNeXt101_vd_64x4d   | 224       | 256               | 28.398                   |
| ResNeXt152_32x4d      | 224       | 256               | 22.996                   |
| ResNeXt152_vd_32x4d   | 224       | 256               | 22.729                   |
| ResNeXt152_64x4d      | 224       | 256               | 46.705                   |
| ResNeXt152_vd_64x4d   | 224       | 256               | 46.395                   |
| SE_ResNet18_vd        | 224       | 256               | 1.694                    |
| SE_ResNet34_vd        | 224       | 256               | 2.786                    |
| SE_ResNet50_vd        | 224       | 256               | 3.749                    |
| SE_ResNeXt50_32x4d    | 224       | 256               | 8.924                    |
| SE_ResNeXt50_vd_32x4d | 224       | 256               | 9.011                    |
| SE_ResNeXt101_32x4d   | 224       | 256               | 19.204                   |
| SENet154_vd           | 224       | 256               | 50.406                   |
littletomatodonkey's avatar
littletomatodonkey 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112


## 基于T4 GPU的预测速度

| Models                | Crop Size | Resize Short Size | FP16<br>batch_size=1<br>(ms) | FP16<br>batch_size=4<br>(ms) | FP16<br>batch_size=8<br>(ms) | FP32<br>batch_size=1<br>(ms) | FP32<br>batch_size=4<br>(ms) | FP32<br>batch_size=8<br>(ms) |
|-----------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Res2Net50_26w_4s      | 224       | 256               | 3.56067                      | 6.61827                      | 11.41566                     | 4.47188                      | 9.65722                      | 17.54535                     |
| Res2Net50_vd_26w_4s   | 224       | 256               | 3.69221                      | 6.94419                      | 11.92441                     | 4.52712                      | 9.93247                      | 18.16928                     |
| Res2Net50_14w_8s      | 224       | 256               | 4.45745                      | 7.69847                      | 12.30935                     | 5.4026                       | 10.60273                     | 18.01234                     |
| Res2Net101_vd_26w_4s  | 224       | 256               | 6.53122                      | 10.81895                     | 18.94395                     | 8.08729                      | 17.31208                     | 31.95762                     |
| Res2Net200_vd_26w_4s  | 224       | 256               | 11.66671                     | 18.93953                     | 33.19188                     | 14.67806                     | 32.35032                     | 63.65899                     |
| ResNeXt50_32x4d       | 224       | 256               | 7.61087                      | 8.88918                      | 12.99674                     | 7.56327                      | 10.6134                      | 18.46915                     |
| ResNeXt50_vd_32x4d    | 224       | 256               | 7.69065                      | 8.94014                      | 13.4088                      | 7.62044                      | 11.03385                     | 19.15339                     |
| ResNeXt50_64x4d       | 224       | 256               | 13.78688                     | 15.84655                     | 21.79537                     | 13.80962                     | 18.4712                      | 33.49843                     |
| ResNeXt50_vd_64x4d    | 224       | 256               | 13.79538                     | 15.22201                     | 22.27045                     | 13.94449                     | 18.88759                     | 34.28889                     |
| ResNeXt101_32x4d      | 224       | 256               | 16.59777                     | 17.93153                     | 21.36541                     | 16.21503                     | 19.96568                     | 33.76831                     |
| ResNeXt101_vd_32x4d   | 224       | 256               | 16.36909                     | 17.45681                     | 22.10216                     | 16.28103                     | 20.25611                     | 34.37152                     |
| ResNeXt101_64x4d      | 224       | 256               | 30.12355                     | 32.46823                     | 38.41901                     | 30.4788                      | 36.29801                     | 68.85559                     |
| ResNeXt101_vd_64x4d   | 224       | 256               | 30.34022                     | 32.27869                     | 38.72523                     | 30.40456                     | 36.77324                     | 69.66021                     |
| ResNeXt152_32x4d      | 224       | 256               | 25.26417                     | 26.57001                     | 30.67834                     | 24.86299                     | 29.36764                     | 52.09426                     |
| ResNeXt152_vd_32x4d   | 224       | 256               | 25.11196                     | 26.70515                     | 31.72636                     | 25.03258                     | 30.08987                     | 52.64429                     |
| ResNeXt152_64x4d      | 224       | 256               | 46.58293                     | 48.34563                     | 56.97961                     | 46.7564                      | 56.34108                     | 106.11736                    |
| ResNeXt152_vd_64x4d   | 224       | 256               | 47.68447                     | 48.91406                     | 57.29329                     | 47.18638                     | 57.16257                     | 107.26288                    |
| SE_ResNet18_vd        | 224       | 256               | 1.61823                      | 3.1391                       | 4.60282                      | 1.7691                       | 4.19877                      | 7.5331                       |
| SE_ResNet34_vd        | 224       | 256               | 2.67518                      | 5.04694                      | 7.18946                      | 2.88559                      | 7.03291                      | 12.73502                     |
| SE_ResNet50_vd        | 224       | 256               | 3.65394                      | 7.568                        | 12.52793                     | 4.28393                      | 10.38846                     | 18.33154                     |
| SE_ResNeXt50_32x4d    | 224       | 256               | 9.06957                      | 11.37898                     | 18.86282                     | 8.74121                      | 13.563                       | 23.01954                     |
| SE_ResNeXt50_vd_32x4d | 224       | 256               | 9.25016                      | 11.85045                     | 25.57004                     | 9.17134                      | 14.76192                     | 19.914                       |
| SE_ResNeXt101_32x4d   | 224       | 256               | 19.34455                     | 20.6104                      | 32.20432                     | 18.82604                     | 25.31814                     | 41.97758                     |
| SENet154_vd           | 224       | 256               | 49.85733                     | 54.37267                     | 74.70447                     | 53.79794                     | 66.31684                     | 121.59885                    |