paddle_hub_serving_deploy_en.md 8.7 KB
Newer Older
G
gaotingquan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
# Service deployment based on PaddleHub Serving

PaddleClas supports rapid service deployment through Paddlehub. At present, it supports the deployment of image classification. Please look forward to the deployment of image recognition.

---

## Contents
- [1. Introduction](#1)
- [2. Prepare the environment](#2)
- [3. Download inference model](#3)
- [4. Install Service Module](#4)
- [5. Start service](#5)
    - [5.1 Start with command line parameters](#5.1)
    - [5.2 Start with configuration file](#5.2)
- [6. Send prediction requests](#6)
- [7. User defined service module modification](#7)

HubServing service pack contains 3 files, the directory is as follows:  

```
hubserving/clas/
  └─  __init__.py    Empty file, required
  └─  config.json    Configuration file, optional, passed in as a parameter when using configuration to start the service
  └─  module.py      Main module file, required, contains the complete logic of the service
  └─  params.py      Parameter file, required, including parameters such as model path, pre- and post-processing parameters
```

<a name="2"></a>
## 2. Prepare the environment

```shell
# Install version 2.0 of PaddleHub  
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```

<a name="3"></a>
## 3. Download inference model

Before installing the service module, you need to prepare the inference model and put it in the correct path. The default model path is:  

* Model structure file: `PaddleClas/inference/inference.pdmodel`
* Model parameters file: `PaddleClas/inference/inference.pdiparams`

**Notice**:
* The model file path can be viewed and modified in `PaddleClas/deploy/hubserving/clas/params.py`.
* It should be noted that the prefix of model structure file and model parameters file must be `inference`.
* More models provided by PaddleClas can be obtained from the [model library](../../docs/en/models/models_intro_en.md). You can also use models trained by yourself.

<a name="4"></a>
## 4. Install Service Module

* On Linux platform, the examples are as follows.
```shell
cd PaddleClas/deploy
hub install hubserving/clas/
```

* On Windows platform, the examples are as follows.
```shell
cd PaddleClas\deploy
hub install hubserving\clas\
```

<a name="5"></a>
## 5. Start service

<a name="5.1"></a>
### 5.1 Start with command line parameters

This method only supports CPU. Command as follow:

```shell
$ hub serving start --modules Module1==Version1 \
                    --port XXXX \
                    --use_multiprocess \
                    --workers \
```  

**parameters:**  

|parameters|usage|  
|-|-|  
|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>*`When Version is not specified, the latest version is selected by default`*|
|--port/-p|Service port, default is 8866|  
|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines<br>*`Windows operating system only supports single-process mode`*|
|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|  

For example, start service:  

```shell
hub serving start -m clas_system
```  

This completes the deployment of a service API, using the default port number 8866.  

<a name="5.2"></a>
### 5.2 Start with configuration file

This method supports CPU and GPU. Command as follow:

```shell
hub serving start --config/-c config.json
```  

Wherein, the format of `config.json` is as follows:

```json
{
    "modules_info": {
        "clas_system": {
            "init_args": {
                "version": "1.0.0",
                "use_gpu": true,
                "enable_mkldnn": false
            },
            "predict_args": {
            }
        }
    },
    "port": 8866,
    "use_multiprocess": false,
    "workers": 2
}
```

- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them,
  - when `use_gpu` is `true`, it means that the GPU is used to start the service.
  - when `enable_mkldnn` is `true`, it means that use MKL-DNN to accelerate.
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.

**Note:**  
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**  
- **When both `use_gpu` and `enable_mkldnn` are set to `true` at the same time, GPU is used to run and `enable_mkldnn` will be ignored.**

For example, use GPU card No. 3 to start the 2-stage series service:

```shell
cd PaddleClas/deploy
export CUDA_VISIBLE_DEVICES=3
hub serving start -c hubserving/clas/config.json
```

<a name="6"></a>
## 6. Send prediction requests

After the service starting, you can use the following command to send a prediction request to obtain the prediction result:  

```shell
cd PaddleClas/deploy
python hubserving/test_hubserving.py server_url image_path
```

Two required parameters need to be passed to the script:

- **server_url**: service address,format of which is
`http://[ip_address]:[port]/predict/[module_name]`  
- **image_path**: Test image path, can be a single image path or an image directory path
- **batch_size**: [**Optional**] batch_size. Default by `1`.
- **resize_short**: [**Optional**] In preprocessing, resize according to short size. Default by `256`
- **crop_size**: [**Optional**] In preprocessing, centor crop size. Default by `224`
- **normalize**: [**Optional**] In preprocessing, whether to do `normalize`. Default by `True`
- **to_chw**: [**Optional**] In preprocessing, whether to transpose to `CHW`. Default by `True`

**Notice**:
If you want to use `Transformer series models`, such as `DeiT_***_384`, `ViT_***_384`, etc., please pay attention to the input size of model, and need to set `--resize_short=384`, `--crop_size=384`.

**Eg.**
```shell
python hubserving/test_hubserving.py --server_url http://127.0.0.1:8866/predict/clas_system --image_file ./hubserving/ILSVRC2012_val_00006666.JPEG --batch_size 8
```

The returned result is a list, including the `top_k`'s classification results, corresponding scores and the time cost of prediction, details as follows.

```
list: The returned results
└─ list: The result of first picture
   └─ list: The top-k classification results, sorted in descending order of score
   └─ list: The scores corresponding to the top-k classification results, sorted in descending order of score
   └─ float: The time cost of predicting the picture, unit second
```

**Note:** If you need to add, delete or modify the returned fields, you can modify the corresponding module. For the details, refer to the user-defined modification service module in the next section.

<a name="7"></a>
## 7. User defined service module modification

If you need to modify the service logic, the following steps are generally required:

1. Stop service
```shell
hub serving stop --port/-p XXXX
```

2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs. You need re-install(hub install hubserving/clas/) and re-deploy after modifing `module.py`.
After modifying and installing and before deploying, you can use `python hubserving/clas/module.py` to test the installed service module.

For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `cfg.model_file` and `cfg.params_file` in `params.py`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation.

3. Uninstall old service module
```shell
hub uninstall clas_system
```

4. Install modified service module
```shell
hub install hubserving/clas/
```

5. Restart service
```shell
hub serving start -m clas_system
```

**Note**:

Common parameters can be modified in params.py:
* Directory of model files(include model structure file and model parameters file):
    ```python
    "inference_model_dir":
    ```
* The number of Top-k results returned during post-processing:
    ```python
    'topk':
    ```
* Mapping file corresponding to label and class ID during post-processing:
    ```python
    'class_id_map_file':
    ```

In order to avoid unnecessary delay and be able to predict in batch, the preprocessing (include resize, crop and other) is completed in the client, so modify [test_hubserving.py](../../deploy/hubserving/test_hubserving.py#L35-L52) if necessary.