tnt.py 11.1 KB
Newer Older
jm_12138's avatar
jm_12138 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28
import math
import numpy as np

import paddle
import paddle.nn as nn

from paddle.nn.initializer import TruncatedNormal, Constant

from ppcls.arch.backbone.base.theseus_layer import Identity
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url


MODEL_URLS = {
    "TNT_small":
C
cuicheng01 已提交
29
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams"
30 31 32
}


jm_12138's avatar
jm_12138 已提交
33 34 35
__all__ = MODEL_URLS.keys()


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


def drop_path(x, drop_prob=0., training=False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor
    return output


class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Mlp(nn.Layer):
    def __init__(self, in_features, hidden_features=None,
                 out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Layer):
    def __init__(self, dim, hidden_dim, num_heads=8, 
                 qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        head_dim = hidden_dim // num_heads
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5

        self.qk = nn.Linear(dim, hidden_dim * 2, bias_attr=qkv_bias)
        self.v = nn.Linear(dim, dim, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qk = self.qk(x).reshape((B, N, 2, self.num_heads, self.head_dim)).transpose((2, 0, 3, 1, 4))

        q, k = qk[0], qk[1]
        v = self.v(x).reshape((B, N, self.num_heads, -1)).transpose((0, 2, 1, 3))

        attn = (q @ k.transpose((0, 1, 3, 2))) * self.scale
        attn = nn.functional.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose((0, 2, 1, 3)).reshape((B, N, -1))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Layer):
    def __init__(self, dim, in_dim, num_pixel, num_heads=12, in_num_head=4, mlp_ratio=4.,
                 qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        # Inner transformer
        self.norm_in = norm_layer(in_dim)
        self.attn_in = Attention(
            in_dim, in_dim, num_heads=in_num_head, 
            qkv_bias=qkv_bias, attn_drop=attn_drop, 
            proj_drop=drop
        )

        self.norm_mlp_in = norm_layer(in_dim)
        self.mlp_in = Mlp(
            in_features=in_dim, hidden_features=int(in_dim * 4),
            out_features=in_dim, act_layer=act_layer, drop=drop
        )

        self.norm1_proj = norm_layer(in_dim)
        self.proj = nn.Linear(in_dim * num_pixel, dim)
        # Outer transformer
        self.norm_out = norm_layer(dim)
        self.attn_out = Attention(
            dim, dim, num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()

        self.norm_mlp = norm_layer(dim)
        self.mlp = Mlp(
            in_features=dim, hidden_features=int(dim * mlp_ratio),
            out_features=dim, act_layer=act_layer, drop=drop
        )

    def forward(self, pixel_embed, patch_embed):
        # inner
        pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed)))
        pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))
        # outer
        B, N, C = patch_embed.shape
        patch_embed[:, 1:] = patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape((B, N - 1, -1)))
        patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
        patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
        return pixel_embed, patch_embed


class PixelEmbed(nn.Layer):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
        super().__init__()
        num_patches = (img_size // patch_size) ** 2
        self.img_size = img_size
        self.num_patches = num_patches
        self.in_dim = in_dim
        new_patch_size = math.ceil(patch_size / stride)
        self.new_patch_size = new_patch_size

        self.proj = nn.Conv2D(
            in_chans, self.in_dim,
            kernel_size=7, padding=3, 
            stride=stride
        )

    def forward(self, x, pixel_pos):
        B, C, H, W = x.shape
        assert H == self.img_size and W == self.img_size, f"Input image size ({H}*{W}) doesn't match model ({self.img_size}*{self.img_size})."

        x = self.proj(x)
        x = nn.functional.unfold(x, self.new_patch_size, self.new_patch_size)
        x = x.transpose((0, 2, 1)).reshape((B * self.num_patches, self.in_dim, self.new_patch_size, self.new_patch_size))
        x = x + pixel_pos
        x = x.reshape((B * self.num_patches, self.in_dim, -1)).transpose((0, 2, 1))
        return x


class TNT(nn.Layer):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, in_dim=48, depth=12,
                 num_heads=12, in_num_head=4, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, first_stride=4, class_dim=1000):
        super().__init__()
        self.class_dim = class_dim
        # num_features for consistency with other models
        self.num_features = self.embed_dim = embed_dim

        self.pixel_embed = PixelEmbed(
            img_size=img_size, patch_size=patch_size, 
            in_chans=in_chans, in_dim=in_dim, stride=first_stride
        )
        num_patches = self.pixel_embed.num_patches
        self.num_patches = num_patches
        new_patch_size = self.pixel_embed.new_patch_size
        num_pixel = new_patch_size ** 2

        self.norm1_proj = norm_layer(num_pixel * in_dim)
        self.proj = nn.Linear(num_pixel * in_dim, embed_dim)
        self.norm2_proj = norm_layer(embed_dim)

        self.cls_token = self.create_parameter(
            shape=(1, 1, embed_dim), 
            default_initializer=zeros_
        )
        self.add_parameter("cls_token", self.cls_token)

        self.patch_pos = self.create_parameter(
            shape=(1, num_patches + 1, embed_dim), 
            default_initializer=zeros_
        )
        self.add_parameter("patch_pos", self.patch_pos)

        self.pixel_pos = self.create_parameter(
            shape=(1, in_dim, new_patch_size, new_patch_size), 
            default_initializer=zeros_
        )
        self.add_parameter("pixel_pos", self.pixel_pos)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth decay rule
        dpr = np.linspace(0, drop_path_rate, depth)

        blocks = []
        for i in range(depth):
            blocks.append(Block(
                dim=embed_dim, in_dim=in_dim, num_pixel=num_pixel, num_heads=num_heads, 
                in_num_head=in_num_head, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, 
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], 
                norm_layer=norm_layer
            ))
        self.blocks = nn.LayerList(blocks)
        self.norm = norm_layer(embed_dim)

        if class_dim > 0:
            self.head = nn.Linear(embed_dim, class_dim)

        trunc_normal_(self.cls_token)
        trunc_normal_(self.patch_pos)
        trunc_normal_(self.pixel_pos)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward_features(self, x):
        B = x.shape[0]
        pixel_embed = self.pixel_embed(x, self.pixel_pos)

        patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape((B, self.num_patches, -1)))))
        patch_embed = paddle.concat((self.cls_token.expand((B, -1, -1)), patch_embed), axis=1)
        patch_embed = patch_embed + self.patch_pos
        patch_embed = self.pos_drop(patch_embed)

        for blk in self.blocks:
            pixel_embed, patch_embed = blk(pixel_embed, patch_embed)

        patch_embed = self.norm(patch_embed)
        return patch_embed[:, 0]

    def forward(self, x):
        x = self.forward_features(x)

        if self.class_dim > 0:
            x = self.head(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def TNT_small(pretrained=False, **kwargs):
    model = TNT(
        patch_size=16,
        embed_dim=384,
        in_dim=24,
        depth=12,
        num_heads=6,
        in_num_head=4,
        qkv_bias=False,
        **kwargs
    )
    _load_pretrained(pretrained, model, MODEL_URLS["TNT_small"])
    return model