README.md 37.7 KB
Newer Older
D
dyning 已提交
1 2
简体中文 | [English](README_en.md)

D
dyning 已提交
3
# PaddleClas
D
dyning 已提交
4

D
dyning 已提交
5
## 简介
D
dyning 已提交
6

D
dyning 已提交
7 8
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。

littletomatodonkey's avatar
littletomatodonkey 已提交
9
**近期更新**
littletomatodonkey's avatar
littletomatodonkey 已提交
10 11
- 2020.09.07 添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
- 2020.07.14 添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%;添加Fix_ResNet50_vd_ssld_v2模型,在ImageNet上Top-1 Acc可达84.0%。
littletomatodonkey's avatar
littletomatodonkey 已提交
12 13 14
- 2020.06.17 添加英文文档。
- 2020.06.12 添加对windows和CPU环境的训练与评估支持。
- 2020.05.17 添加混合精度训练,基于ResNet50模型,精度几乎无损的情况下,训练时间可以减少约40%。
D
dyning 已提交
15
- [more](./docs/zh_CN/update_history.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17 18 19


## 特性

D
dyning 已提交
20
- 丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了24个系列的分类网络结构和训练配置,121个预训练模型和性能评估。
littletomatodonkey's avatar
littletomatodonkey 已提交
21

D
dyning 已提交
22
- SSLD知识蒸馏:基于该方案蒸馏模型的识别准确率普遍提升3%以上。
littletomatodonkey's avatar
littletomatodonkey 已提交
23

D
dyning 已提交
24
- 数据增广:支持AutoAugment、Cutout、Cutmix等8种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。
littletomatodonkey's avatar
littletomatodonkey 已提交
25

D
dyning 已提交
26
- 10万类图像分类预训练模型:百度自研并开源了基于10万类数据集训练的ResNet50_vd模型,在一些实际场景中,使用该预训练模型的识别准确率最多可以提升30%。
littletomatodonkey's avatar
littletomatodonkey 已提交
27

littletomatodonkey's avatar
littletomatodonkey 已提交
28
- 多种训练方案,包括多机训练、混合精度训练等。
littletomatodonkey's avatar
littletomatodonkey 已提交
29

littletomatodonkey's avatar
littletomatodonkey 已提交
30
- 多种预测推理、部署方案,包括TensorRT预测、Paddle-Lite预测、模型服务化部署、模型量化、Paddle Hub等。
littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33 34 35 36 37 38 39

- 可运行于Linux、Windows、MacOS等多种系统。


## 文档教程

- [快速安装](./docs/zh_CN/tutorials/install.md)
- [30分钟玩转PaddleClas](./docs/zh_CN/tutorials/quick_start.md)
- [模型库介绍和预训练模型](./docs/zh_CN/models/models_intro.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
40 41 42 43 44 45 46 47
    - [模型库概览图](#模型库概览图)
    - [ResNet及其Vd系列](#ResNet及其Vd系列)
    - [移动端系列](#移动端系列)
    - [SEResNeXt与Res2Net系列](#SEResNeXt与Res2Net系列)
    - [Inception系列](#Inception系列)
    - [DPN与DenseNet系列](#DPN与DenseNet系列)
    - [EfficientNet与ResNeXt101_wsl系列](#EfficientNet与ResNeXt101_wsl系列)
    - [ResNeSt与RegNet系列](#ResNeSt与RegNet系列)
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
- 模型训练/评估
    - [数据准备](./docs/zh_CN/tutorials/data.md)
    - [模型训练与微调](./docs/zh_CN/tutorials/getting_started.md)
    - [模型评估](./docs/zh_CN/tutorials/getting_started.md)
- 模型预测
    - [基于训练引擎预测推理](./docs/zh_CN/extension/paddle_inference.md)
    - [基于Python预测引擎预测推理](./docs/zh_CN/extension/paddle_inference.md)
    - 基于C++预测引擎预测推理(coming soon)
    - [服务化部署](./docs/zh_CN/extension/paddle_serving.md)
    - 端侧部署(coming soon)
    - [模型量化压缩](docs/zh_CN/extension/paddle_quantization.md)
- 高阶使用
    - [知识蒸馏](./docs/zh_CN/advanced_tutorials/distillation/distillation.md)
    - [数据增广](./docs/zh_CN/advanced_tutorials/image_augmentation/ImageAugment.md)
- 特色拓展应用
    - [迁移学习](./docs/zh_CN/application/transfer_learning.md)
    - [10万类图像分类预训练模型](./docs/zh_CN/application/transfer_learning.md)
    - [通用目标检测](./docs/zh_CN/application/object_detection.md)
- FAQ
    - 图像分类通用问题(coming soon)
    - [PaddleClas实战FAQ](./docs/zh_CN/faq.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
69
- [赛事支持](./docs/zh_CN/competition_support.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
70 71 72 73 74 75
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)


## 模型库

littletomatodonkey's avatar
littletomatodonkey 已提交
76
<a name="模型库概览图"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79 80 81
### 模型库概览图

基于ImageNet1k分类数据集,PaddleClas支持24种系列分类网络结构以及对应的122个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* CPU的评估环境基于骁龙855(SD855)。
* GPU评估环境基于T4机器,在FP32+TensorRT配置下运行500次测得(去除前10次的warmup时间)。
D
dyning 已提交
82

littletomatodonkey's avatar
littletomatodonkey 已提交
83 84
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。

littletomatodonkey's avatar
littletomatodonkey 已提交
85
![](./docs/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png)
D
dyning 已提交
86

littletomatodonkey's avatar
littletomatodonkey 已提交
87 88 89

常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。

littletomatodonkey's avatar
littletomatodonkey 已提交
90
![](./docs/images/models/mobile_arm_storage.png)
D
dyning 已提交
91

littletomatodonkey's avatar
littletomatodonkey 已提交
92
![](./docs/images/models/mobile_arm_top1.png)
D
dyning 已提交
93 94


littletomatodonkey's avatar
littletomatodonkey 已提交
95
<a name="ResNet及其Vd系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
96
### ResNet及其Vd系列
D
dyning 已提交
97

littletomatodonkey's avatar
littletomatodonkey 已提交
98
ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet及其Vd系列模型文档](./docs/zh_CN/models/ResNet_and_vd.md)
D
dyning 已提交
99

littletomatodonkey's avatar
littletomatodonkey 已提交
100 101 102 103 104 105
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
| ResNet18            | 0.7098    | 0.8992    | 1.45606               | 3.56305              | 3.66     | 11.69     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)            |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.54557               | 3.85363              | 4.14     | 11.71     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar)         |
| ResNet34            | 0.7457    | 0.9214    | 2.34957               | 5.89821              | 7.36     | 21.8      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)            |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.43427               | 6.22257              | 7.39     | 21.82     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar)         |
littletomatodonkey's avatar
littletomatodonkey 已提交
106
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.43427               | 6.22257              | 7.39     | 21.82     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar)         |
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108 109 110 111 112 113 114 115
| ResNet50            | 0.7650    | 0.9300    | 3.47712               | 7.84421              | 8.19     | 25.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)            |
| ResNet50_vc         | 0.7835    | 0.9403    | 3.52346               | 8.10725              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar)         |
| ResNet50_vd         | 0.7912    | 0.9444    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar)         |
| ResNet50_vd_v2      | 0.7984    | 0.9493    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar)      |
| ResNet101           | 0.7756    | 0.9364    | 6.07125               | 13.40573             | 15.52    | 44.55     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar)           |
| ResNet101_vd        | 0.8017    | 0.9497    | 6.11704               | 13.76222             | 16.1     | 44.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)        |
| ResNet152           | 0.7826    | 0.9396    | 8.50198               | 19.17073             | 23.05    | 60.19     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar)           |
| ResNet152_vd        | 0.8059    | 0.9530    | 8.54376               | 19.52157             | 23.53    | 60.21     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar)        |
| ResNet200_vd        | 0.8093    | 0.9533    | 10.80619              | 25.01731             | 30.53    | 74.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar)        |
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118
| ResNet50_vd_<br>ssld    | 0.8239    | 0.9610    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar)    |
| ResNet50_vd_<br>ssld_v2 | 0.8300    | 0.9640    | 3.53131               | 8.09057              | 8.67     | 25.58     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 6.11704               | 13.76222             | 16.1     | 44.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)   |
D
dyning 已提交
119

D
dyning 已提交
120

littletomatodonkey's avatar
littletomatodonkey 已提交
121 122 123 124
<a name="移动端系列"></a>
### 移动端系列

移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](./docs/zh_CN/models/Mobile.md)
D
dyning 已提交
125

littletomatodonkey's avatar
littletomatodonkey 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
| 模型                               | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址                                                                                                      |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 3.21985                | 0.07     | 0.46      | 1.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar)                |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 9.579599               | 0.28     | 1.31      | 5.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar)                 |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 19.436399              | 0.63     | 2.55      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar)                |
| MobileNetV1                      | 0.7099    | 0.8968    | 32.523048              | 1.11     | 4.19      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar)                      |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 32.523048              | 1.11     | 4.19      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar)                 |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.79925                | 0.05     | 1.5       | 6.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar)                |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 8.7021                 | 0.17     | 1.93      | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar)                 |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 15.531351              | 0.35     | 2.58      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar)                |
| MobileNetV2                      | 0.7215    | 0.9065    | 23.317699              | 0.6      | 3.44      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar)                      |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 45.623848              | 1.32     | 6.76      | 26      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar)                 |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 74.291649              | 2.32     | 11.13     | 43      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar)                 |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 23.317699              | 0.6      | 3.44      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar)                 |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 28.217701              | 0.714    | 7.44      | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 19.30835               | 0.45     | 5.47      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)           |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 13.5646                | 0.296    | 3.91      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar)          |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 7.49315                | 0.138    | 2.67      | 11      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar)           |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 5.13695                | 0.077    | 2.1       | 8.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 9.2745                 | 0.195    | 3.62      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar)          |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 6.5463                 | 0.123    | 2.94      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar)           |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 5.28435                | 0.088    | 2.37      | 9.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar)          |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 3.35165                | 0.043    | 1.9       | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar)           |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.6352                 | 0.026    | 1.66      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.6352                 | 0.026    | 1.66      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_ssld_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 19.30835               | 0.45     | 5.47      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)      |
| MobileNetV3_large_<br>x1_0_ssld_int8 | 0.7605    |     -      | 14.395                 |    -     |      -     | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 6.5463                 | 0.123    | 2.94      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar)      |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 10.941                 | 0.28     | 2.26      | 9       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar)                     |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 2.329                  | 0.03     | 0.6       | 2.7     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar)               |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.64335                | 0.04     | 0.64      | 2.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar)               |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 4.2613                 | 0.08     | 1.36      | 5.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar)                |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 19.3522                | 0.58     | 3.47      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar)                |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 34.770149              | 1.12     | 7.32      | 28      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar)                |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 16.023151              | 0.29     | 2.26      | 9.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar)               |
| DARTS_GS_4M                      | 0.7523    | 0.9215    | 47.204948              | 1.04     | 4.77      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar)                      |
| DARTS_GS_6M                      | 0.7603    | 0.9279    | 53.720802              | 1.22     | 5.69      | 24      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar)                      |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.7143                 | 0.082    | 2.6       | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams)               |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 13.5587                | 0.294    | 5.2       | 20      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams)               |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.9825                | 0.44     | 7.3       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams)               |


<a name="SEResNeXt与Res2Net系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
169
### SEResNeXt与Res2Net系列
D
dyning 已提交
170

littletomatodonkey's avatar
littletomatodonkey 已提交
171
SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt与Res2Net系列模型文档](./docs/zh_CN/models/SEResNext_and_Res2Net.md)
D
dyning 已提交
172 173


littletomatodonkey's avatar
littletomatodonkey 已提交
174 175
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 4.47188               | 9.65722              | 8.52     | 25.7      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar)          |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 4.52712               | 9.93247              | 8.37     | 25.06     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar)       |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 5.4026                | 10.60273             | 9.01     | 25.72     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar)          |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 8.08729               | 17.31208             | 16.67    | 45.22     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 14.67806              | 32.35032             | 31.49    | 76.21     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 14.67806              | 32.35032             | 31.49    | 76.21     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar) |
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 7.56327               | 10.6134              | 8.02     | 23.64     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 7.62044               | 11.03385             | 8.5      | 23.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar)        |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 13.80962              | 18.4712              | 15.06    | 42.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 13.94449              | 18.88759             | 15.54    | 42.38     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar)        |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 16.21503              | 19.96568             | 15.01    | 41.54     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 16.28103              | 20.25611             | 15.49    | 41.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar)       |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 30.4788               | 36.29801             | 29.05    | 78.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 30.40456              | 36.77324             | 29.53    | 78.14     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar)       |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 24.86299              | 29.36764             | 22.01    | 56.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 25.03258              | 30.08987             | 22.49    | 56.3      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar)       |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 46.7564               | 56.34108             | 43.03    | 107.57    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 47.18638              | 57.16257             | 43.52    | 107.59    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar)       |
littletomatodonkey's avatar
littletomatodonkey 已提交
194 195 196
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.7691                | 4.19877              | 4.14     | 11.8      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar)            |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.88559               | 7.03291              | 7.84     | 21.98     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar)            |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 4.28393               | 10.38846             | 8.67     | 28.09     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar)            |
littletomatodonkey's avatar
littletomatodonkey 已提交
197 198 199
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 8.74121               | 13.563               | 8.02     | 26.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar)        |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 9.17134               | 14.76192             | 10.76    | 26.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar)     |
| SE_ResNeXt101_<br>32x4d       | 0.7912    | 0.9420    | 18.82604              | 25.31814             | 15.02    | 46.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar)       |
littletomatodonkey's avatar
littletomatodonkey 已提交
200
| SENet154_vd               | 0.8140    | 0.9548    | 53.79794              | 66.31684             | 45.83    | 114.29    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar)               |
D
dyning 已提交
201 202


littletomatodonkey's avatar
littletomatodonkey 已提交
203
<a name="DPN与DenseNet系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
204
### DPN与DenseNet系列
D
dyning 已提交
205

littletomatodonkey's avatar
littletomatodonkey 已提交
206
DPN与DenseNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN与DenseNet系列模型文档](./docs/zh_CN/models/DPN_DenseNet.md)
D
dyning 已提交
207

D
dyning 已提交
208

littletomatodonkey's avatar
littletomatodonkey 已提交
209 210 211 212 213 214 215 216 217 218 219 220
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
| DenseNet121 | 0.7566    | 0.9258    | 4.40447               | 9.32623              | 5.69     | 7.98      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 10.39152              | 22.15555             | 15.49    | 28.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 6.43598               | 12.98832             | 6.74     | 14.15     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 8.20652               | 17.45838             | 8.61     | 20.01     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 12.14722              | 26.27707             | 11.54    | 33.37     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) |
| DPN68       | 0.7678    | 0.9343    | 11.64915              | 12.82807             | 4.03     | 10.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar)       |
| DPN92       | 0.7985    | 0.9480    | 18.15746              | 23.87545             | 12.54    | 36.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar)       |
| DPN98       | 0.8059    | 0.9510    | 21.18196              | 33.23925             | 22.22    | 58.46     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar)       |
| DPN107      | 0.8089    | 0.9532    | 27.62046              | 52.65353             | 35.06    | 82.97     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar)      |
| DPN131      | 0.8070    | 0.9514    | 28.33119              | 46.19439             | 30.51    | 75.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar)      |
D
dyning 已提交
221

D
dyning 已提交
222

D
dyning 已提交
223

littletomatodonkey's avatar
littletomatodonkey 已提交
224
<a name="HRNet系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
225
### HRNet系列
littletomatodonkey's avatar
littletomatodonkey 已提交
226

littletomatodonkey's avatar
littletomatodonkey 已提交
227 228 229 230 231
HRNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet系列模型文档](./docs/zh_CN/models/HRNet.md)


| 模型          | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
232 233
| HRNet_W18_C | 0.7692    | 0.9339    | 7.40636          | 13.29752         | 4.14     | 21.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) |
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 7.40636          | 13.29752         | 4.14     | 21.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
234 235 236 237 238
| HRNet_W30_C | 0.7804    | 0.9402    | 9.57594          | 17.35485         | 16.23    | 37.71     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 9.49807          | 17.72921         | 17.86    | 41.23     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 12.12202         | 25.68184         | 25.41    | 57.55     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 13.19858         | 32.25202         | 29.79    | 67.06     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 13.70761         | 34.43572         | 34.58    | 77.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
239
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 13.70761         | 34.43572         | 34.58    | 77.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
240 241 242
| HRNet_W64_C | 0.7930    | 0.9461    | 17.57527         | 47.9533          | 57.83    | 128.06    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) |


littletomatodonkey's avatar
littletomatodonkey 已提交
243
<a name="Inception系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
244
### Inception系列
D
dyning 已提交
245

littletomatodonkey's avatar
littletomatodonkey 已提交
246
Inception系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception系列模型文档](./docs/zh_CN/models/Inception.md)
D
dyning 已提交
247

littletomatodonkey's avatar
littletomatodonkey 已提交
248 249 250 251 252 253 254 255 256
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                         |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
| GoogLeNet          | 0.7070    | 0.8966    | 1.88038               | 4.48882              | 2.88     | 8.46      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar)          |
| Xception41         | 0.7930    | 0.9453    | 4.96939               | 17.01361             | 16.74    | 22.69     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar)         |
| Xception41_deeplab | 0.7955    | 0.9438    | 5.33541               | 17.55938             | 18.16    | 26.73     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) |
| Xception65         | 0.8100    | 0.9549    | 7.26158               | 25.88778             | 25.95    | 35.48     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar)         |
| Xception65_deeplab | 0.8032    | 0.9449    | 7.60208               | 26.03699             | 27.37    | 39.52     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) |
| Xception71         | 0.8111    | 0.9545    | 8.72457               | 31.55549             | 31.77    | 37.28     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar)         |
| InceptionV4        | 0.8077    | 0.9526    | 12.99342              | 25.23416             | 24.57    | 42.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar)        |
D
dyning 已提交
257 258


littletomatodonkey's avatar
littletomatodonkey 已提交
259
<a name="EfficientNet与ResNeXt101_wsl系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
260
### EfficientNet与ResNeXt101_wsl系列
D
dyning 已提交
261

littletomatodonkey's avatar
littletomatodonkey 已提交
262
EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet与ResNeXt101_wsl系列模型文档](./docs/zh_CN/models/Inception.md)
D
dyning 已提交
263 264


littletomatodonkey's avatar
littletomatodonkey 已提交
265 266
| 模型                        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                               |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
267 268 269 270 271
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 18.52528         | 34.25319         | 29.14    | 78.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar)      |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 25.60395         | 71.88384         | 57.55    | 152.66    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 54.87396         | 160.04337        | 115.17   | 303.11    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 99.01698256      | 315.91261        | 173.58   | 456.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar)     |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 160.0838242      | 595.99296        | 354.23   | 456.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
272 273 274 275 276 277 278 279
| EfficientNetB0            | 0.7738    | 0.9331    | 3.442            | 6.11476          | 0.72     | 5.1       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar)            |
| EfficientNetB1            | 0.7915    | 0.9441    | 5.3322           | 9.41795          | 1.27     | 7.52      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar)            |
| EfficientNetB2            | 0.7985    | 0.9474    | 6.29351          | 10.95702         | 1.85     | 8.81      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar)            |
| EfficientNetB3            | 0.8115    | 0.9541    | 7.67749          | 16.53288         | 3.43     | 11.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar)            |
| EfficientNetB4            | 0.8285    | 0.9623    | 12.15894         | 30.94567         | 8.29     | 18.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar)            |
| EfficientNetB5            | 0.8362    | 0.9672    | 20.48571         | 61.60252         | 19.51    | 29.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar)            |
| EfficientNetB6            | 0.8400    | 0.9688    | 32.62402         | -                | 36.27    | 42        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar)            |
| EfficientNetB7            | 0.8430    | 0.9689    | 53.93823         | -                | 72.35    | 64.92     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar)            |
littletomatodonkey's avatar
littletomatodonkey 已提交
280
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 2.3076           | 4.71886          | 0.72     | 4.65      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar)      |
D
dyning 已提交
281

littletomatodonkey's avatar
littletomatodonkey 已提交
282

littletomatodonkey's avatar
littletomatodonkey 已提交
283
<a name="ResNeSt与RegNet系列"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
284 285 286 287 288 289 290
### ResNeSt与RegNet系列

ResNeSt与RegNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt与RegNet系列模型文档](./docs/zh_CN/models/ResNeSt_RegNet.md)


| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址                                                                                                 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
291 292
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 3.45405                | 8.72680                | 8.68     | 26.3      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
| ResNeSt50              | 0.8102    | 0.9542    | 6.69042    | 8.01664                | 10.78    | 27.5      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams)              |
littletomatodonkey's avatar
littletomatodonkey 已提交
293 294 295 296
| RegNetX_4GF            | 0.785     | 0.9416    |    6.46478              |      11.19862           | 8        | 22.1      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams)            |


<a name="许可证书"></a>
D
dyning 已提交
297
## 许可证书
D
dyning 已提交
298
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
D
dyning 已提交
299 300


littletomatodonkey's avatar
littletomatodonkey 已提交
301 302
<a name="贡献代码"></a>
## 贡献代码
littletomatodonkey's avatar
littletomatodonkey 已提交
303
我们非常欢迎你为PaddleClas贡献代码,也十分感谢你的反馈。
littletomatodonkey's avatar
littletomatodonkey 已提交
304 305 306

- 非常感谢[nblib](https://github.com/nblib)修正了PaddleClas中RandErasing的数据增广配置文件。
- 非常感谢[chenpy228](https://github.com/chenpy228)修正了PaddleClas文档中的部分错别字。