pp_hgnet.py 11.8 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingNormal, Constant
from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
from paddle.regularizer import L2Decay
from paddle import ParamAttr

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
    "PPHGNet_tiny":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams",
    "PPHGNet_small":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams"
}

__all__ = list(MODEL_URLS.keys())

kaiming_normal_ = KaimingNormal()
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


class ConvBNAct(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 groups=1,
                 use_act=True):
        super().__init__()
        self.use_act = use_act
        self.conv = Conv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            bias_attr=False)
        self.bn = BatchNorm2D(
            out_channels,
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        if self.use_act:
            self.act = ReLU()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.use_act:
            x = self.act(x)
        return x


class ESEModule(TheseusLayer):
    def __init__(self, channels):
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv = Conv2D(
            in_channels=channels,
            out_channels=channels,
            kernel_size=1,
            stride=1,
            padding=0)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv(x)
        x = self.sigmoid(x)
        return paddle.multiply(x=identity, y=x)


C
cuicheng01 已提交
93
class HG_Block(TheseusLayer):
C
cuicheng01 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def __init__(
            self,
            in_channels,
            mid_channels,
            out_channels,
            layer_num,
            identity=False, ):
        super().__init__()
        self.identity = identity

        self.layers = nn.LayerList()
        self.layers.append(
            ConvBNAct(
                in_channels=in_channels,
                out_channels=mid_channels,
                kernel_size=3,
                stride=1))
        for _ in range(layer_num - 1):
            self.layers.append(
                ConvBNAct(
                    in_channels=mid_channels,
                    out_channels=mid_channels,
                    kernel_size=3,
                    stride=1))

        # feature aggregation
        total_channels = in_channels + layer_num * mid_channels
        self.aggregation_conv = ConvBNAct(
            in_channels=total_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1)
        self.att = ESEModule(out_channels)

    def forward(self, x):
        identity = x
        output = []
        output.append(x)
        for layer in self.layers:
            x = layer(x)
            output.append(x)
        x = paddle.concat(output, axis=1)
        x = self.aggregation_conv(x)
        x = self.att(x)
        if self.identity:
            x += identity
        return x


C
cuicheng01 已提交
143
class HG_Stage(TheseusLayer):
C
cuicheng01 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def __init__(self,
                 in_channels,
                 mid_channels,
                 out_channels,
                 block_num,
                 layer_num,
                 downsample=True):
        super().__init__()
        self.downsample = downsample
        if downsample:
            self.downsample = ConvBNAct(
                in_channels=in_channels,
                out_channels=in_channels,
                kernel_size=3,
                stride=2,
                groups=in_channels,
                use_act=False)

        blocks_list = []
        blocks_list.append(
C
cuicheng01 已提交
164
            HG_Block(
C
cuicheng01 已提交
165 166 167 168 169 170 171
                in_channels,
                mid_channels,
                out_channels,
                layer_num,
                identity=False))
        for _ in range(block_num - 1):
            blocks_list.append(
C
cuicheng01 已提交
172
                HG_Block(
C
cuicheng01 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                    out_channels,
                    mid_channels,
                    out_channels,
                    layer_num,
                    identity=True))
        self.blocks = nn.Sequential(*blocks_list)

    def forward(self, x):
        if self.downsample:
            x = self.downsample(x)
        x = self.blocks(x)
        return x


class PPHGNet(TheseusLayer):
    """
    PPHGNet
    Args:
        stem_channels: list. Stem channel list of PPHGNet.
        stage_config: dict. The configuration of each stage of PPHGNet. such as the number of channels, stride, etc.
        layer_num: int. Number of layers of HG_Block.
        use_last_conv: boolean. Whether to use a 1x1 convolutional layer before the classification layer.
        class_expand: int=2048. Number of channels for the last 1x1 convolutional layer.
        dropout_prob: float. Parameters of dropout, 0.0 means dropout is not used.
        class_num: int=1000. The number of classes.
    Returns:
        model: nn.Layer. Specific PPHGNet model depends on args.
    """
    def __init__(self,
                 stem_channels,
                 stage_config,
                 layer_num,
                 use_last_conv=True,
                 class_expand=2048,
                 dropout_prob=0.0,
                 class_num=1000):
        super().__init__()
        self.use_last_conv = use_last_conv
        self.class_expand = class_expand

        # stem
        stem_channels.insert(0, 3)
        self.stem = nn.Sequential(* [
            ConvBNAct(
                in_channels=stem_channels[i],
                out_channels=stem_channels[i + 1],
                kernel_size=3,
                stride=2 if i == 0 else 1) for i in range(
                    len(stem_channels) - 1)
        ])
        self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)

        # stages
        self.stages = nn.LayerList()
        for k in stage_config:
            in_channels, mid_channels, out_channels, block_num, downsample = stage_config[
                k]
            self.stages.append(
C
cuicheng01 已提交
231
                HG_Stage(in_channels, mid_channels, out_channels, block_num,
C
cuicheng01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                          layer_num, downsample))

        self.avg_pool = AdaptiveAvgPool2D(1)
        if self.use_last_conv:
            self.last_conv = Conv2D(
                in_channels=out_channels,
                out_channels=self.class_expand,
                kernel_size=1,
                stride=1,
                padding=0,
                bias_attr=False)
            self.act = nn.ReLU()
            self.dropout = nn.Dropout(
                p=dropout_prob, mode="downscale_in_infer")

        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
        self.fc = nn.Linear(self.class_expand
                            if self.use_last_conv else out_channels, class_num)

        self._init_weights()

    def _init_weights(self):
        for m in self.sublayers():
            if isinstance(m, nn.Conv2D):
                kaiming_normal_(m.weight)
            elif isinstance(m, (nn.BatchNorm2D)):
                ones_(m.weight)
                zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                zeros_(m.bias)

    def forward(self, x):
        x = self.stem(x)
        x = self.pool(x)

        for stage in self.stages:
            x = stage(x)

        x = self.avg_pool(x)
        if self.use_last_conv:
            x = self.last_conv(x)
            x = self.act(x)
            x = self.dropout(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def PPHGNet_tiny(pretrained=False, use_ssld=False, **kwargs):
    """
    PPHGNet_tiny
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `PPHGNet_tiny` model depends on args.
    """
    stage_config = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        "stage1": [96, 96, 224, 1, False],
        "stage2": [224, 128, 448, 1, True],
        "stage3": [448, 160, 512, 2, True],
        "stage4": [512, 192, 768, 1, True],
    }

    model = PPHGNet(
        stem_channels=[48, 48, 96],
        stage_config=stage_config,
        layer_num=5,
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_tiny"], use_ssld)
    return model


def PPHGNet_small(pretrained=False, use_ssld=False, **kwargs):
    """
    PPHGNet_small
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `PPHGNet_small` model depends on args.
    """
    stage_config = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        "stage1": [128, 128, 256, 1, False],
        "stage2": [256, 160, 512, 1, True],
        "stage3": [512, 192, 768, 2, True],
        "stage4": [768, 224, 1024, 1, True],
    }

    model = PPHGNet(
        stem_channels=[64, 64, 128],
        stage_config=stage_config,
        layer_num=6,
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_small"], use_ssld)
    return model


def PPHGNet_base(pretrained=False, use_ssld=False, **kwargs):
    """
    PPHGNet_base
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `PPHGNet_base` model depends on args.
    """
    stage_config = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        "stage1": [160, 192, 320, 1, False],
        "stage2": [320, 224, 640, 2, True],
        "stage3": [640, 256, 960, 3, True],
        "stage4": [960, 288, 1280, 2, True],
    }

    model = PPHGNet(
        stem_channels=[96, 96, 160],
        stage_config=stage_config,
        layer_num=7,
        dropout_prob=0.2,
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_base"], use_ssld)
    return model