“d4447c2235888857dcf8c8212f773c443d0acb7a”上不存在“modelcenter/PP-TinyPose/info.yaml”
vision_transformer.py 11.5 KB
Newer Older
jm_12138's avatar
jm_12138 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
jm_12138's avatar
jm_12138 已提交
16 17 18 19 20
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant

__all__ = [
21 22 23 24
    "VisionTransformer", "ViT_small_patch16_224", "ViT_base_patch16_224",
    "ViT_base_patch16_384", "ViT_base_patch32_384", "ViT_large_patch16_224",
    "ViT_large_patch16_384", "ViT_large_patch32_384", "ViT_huge_patch16_224",
    "ViT_huge_patch32_384"
jm_12138's avatar
jm_12138 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
]

trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


def to_2tuple(x):
    return tuple([x] * 2)


def drop_path(x, drop_prob=0., training=False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0. or not training:
        return x
jm_12138's avatar
jm_12138 已提交
43
    keep_prob = paddle.to_tensor(1 - drop_prob)
44
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
jm_12138's avatar
jm_12138 已提交
45
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
46
    random_tensor = paddle.floor(random_tensor)  # binarize
jm_12138's avatar
jm_12138 已提交
47
    output = x.divide(keep_prob) * random_tensor
jm_12138's avatar
jm_12138 已提交
48 49
    return output

50

jm_12138's avatar
jm_12138 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Identity(nn.Layer):
    def __init__(self):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


class Mlp(nn.Layer):
72 73 74 75 76 77
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
jm_12138's avatar
jm_12138 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Layer):
96 97 98 99 100 101 102
    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.):
jm_12138's avatar
jm_12138 已提交
103 104 105
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
106
        self.scale = qk_scale or head_dim**-0.5
jm_12138's avatar
jm_12138 已提交
107 108 109 110 111 112 113

        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
114 115 116
        # B= paddle.shape(x)[0]
        N, C = x.shape[1:]
        qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //
jm_12138's avatar
jm_12138 已提交
117 118 119 120 121 122 123
                                   self.num_heads)).transpose((2, 0, 3, 1, 4))
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
        attn = nn.functional.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)

124
        x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
jm_12138's avatar
jm_12138 已提交
125 126 127 128 129 130
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Layer):
131 132 133 134 135 136 137 138 139 140 141 142
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer='nn.LayerNorm',
                 epsilon=1e-5):
jm_12138's avatar
jm_12138 已提交
143 144 145
        super().__init__()
        self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
        self.attn = Attention(
146 147 148 149 150 151
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)
jm_12138's avatar
jm_12138 已提交
152 153 154 155
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
        self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
        mlp_hidden_dim = int(dim * mlp_ratio)
156 157 158 159
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)
jm_12138's avatar
jm_12138 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * \
            (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

181 182
        self.proj = nn.Conv2D(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
jm_12138's avatar
jm_12138 已提交
183 184 185 186

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
187
            "Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
jm_12138's avatar
jm_12138 已提交
188 189 190 191 192 193 194 195 196

        x = self.proj(x).flatten(2).transpose((0, 2, 1))
        return x


class VisionTransformer(nn.Layer):
    """ Vision Transformer with support for patch input
    """

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 in_chans=3,
                 class_dim=1000,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer='nn.LayerNorm',
                 epsilon=1e-5,
                 **args):
jm_12138's avatar
jm_12138 已提交
214 215 216 217 218 219
        super().__init__()
        self.class_dim = class_dim

        self.num_features = self.embed_dim = embed_dim

        self.patch_embed = PatchEmbed(
220 221 222 223
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim)
jm_12138's avatar
jm_12138 已提交
224 225 226 227 228 229 230 231 232 233
        num_patches = self.patch_embed.num_patches

        self.pos_embed = self.create_parameter(
            shape=(1, num_patches + 1, embed_dim), default_initializer=zeros_)
        self.add_parameter("pos_embed", self.pos_embed)
        self.cls_token = self.create_parameter(
            shape=(1, 1, embed_dim), default_initializer=zeros_)
        self.add_parameter("cls_token", self.cls_token)
        self.pos_drop = nn.Dropout(p=drop_rate)

234
        dpr = np.linspace(0, drop_path_rate, depth)
jm_12138's avatar
jm_12138 已提交
235 236 237

        self.blocks = nn.LayerList([
            Block(
238 239 240 241 242 243 244 245 246 247 248
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                epsilon=epsilon) for i in range(depth)
        ])
jm_12138's avatar
jm_12138 已提交
249 250 251 252

        self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)

        # Classifier head
253 254
        self.head = nn.Linear(embed_dim,
                              class_dim) if class_dim > 0 else Identity()
jm_12138's avatar
jm_12138 已提交
255

256 257 258 259 260
        # TODO(littletomatodonkey): same init in static mode
        if paddle.in_dynamic_mode():
            trunc_normal_(self.pos_embed)
            trunc_normal_(self.cls_token)
            self.apply(self._init_weights)
jm_12138's avatar
jm_12138 已提交
261 262 263 264 265 266 267 268 269 270 271

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward_features(self, x):
272 273
        # B = x.shape[0]
        B = paddle.shape(x)[0]
jm_12138's avatar
jm_12138 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        x = self.patch_embed(x)
        cls_tokens = self.cls_token.expand((B, -1, -1))
        x = paddle.concat((cls_tokens, x), axis=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)
        return x[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def ViT_small_patch16_224(**kwargs):
    model = VisionTransformer(
292 293 294 295 296 297 298
        patch_size=16,
        embed_dim=768,
        depth=8,
        num_heads=8,
        mlp_ratio=3,
        qk_scale=768**-0.5,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
299 300 301 302 303
    return model


def ViT_base_patch16_224(**kwargs):
    model = VisionTransformer(
304 305 306 307 308 309 310 311
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        epsilon=1e-6,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
312 313 314 315 316
    return model


def ViT_base_patch16_384(**kwargs):
    model = VisionTransformer(
317 318 319 320 321 322 323 324 325
        img_size=384,
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        epsilon=1e-6,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
326 327 328 329 330
    return model


def ViT_base_patch32_384(**kwargs):
    model = VisionTransformer(
331 332 333 334 335 336 337 338 339
        img_size=384,
        patch_size=32,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        epsilon=1e-6,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
340 341 342 343 344
    return model


def ViT_large_patch16_224(**kwargs):
    model = VisionTransformer(
345 346 347 348 349 350 351 352
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        epsilon=1e-6,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
353 354 355 356 357
    return model


def ViT_large_patch16_384(**kwargs):
    model = VisionTransformer(
358 359 360 361 362 363 364 365 366
        img_size=384,
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        epsilon=1e-6,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
367 368 369 370 371
    return model


def ViT_large_patch32_384(**kwargs):
    model = VisionTransformer(
372 373 374 375 376 377 378 379 380
        img_size=384,
        patch_size=32,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        epsilon=1e-6,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
381 382 383 384 385
    return model


def ViT_huge_patch16_224(**kwargs):
    model = VisionTransformer(
386 387 388 389 390 391
        patch_size=16,
        embed_dim=1280,
        depth=32,
        num_heads=16,
        mlp_ratio=4,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
392 393 394 395 396
    return model


def ViT_huge_patch32_384(**kwargs):
    model = VisionTransformer(
397 398 399 400 401 402 403
        img_size=384,
        patch_size=32,
        embed_dim=1280,
        depth=32,
        num_heads=16,
        mlp_ratio=4,
        **kwargs)
jm_12138's avatar
jm_12138 已提交
404
    return model