program.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import numpy as np

from collections import OrderedDict

import paddle
import paddle.nn.functional as F

from ppcls.optimizer.learning_rate import LearningRateBuilder
from ppcls.optimizer.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
from ppcls.modeling.loss import JSDivLoss
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.distributed import fleet
from paddle.distributed.fleet import DistributedStrategy


T
Tingquan Gao 已提交
42
def create_feeds(image_shape, use_mix=None, use_dali=None):
43 44 45 46 47 48 49 50 51 52 53 54 55
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = paddle.static.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
T
Tingquan Gao 已提交
56
    if use_mix and not use_dali:
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        feeds['feed_y_a'] = paddle.static.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = paddle.static.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = paddle.static.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
        feeds['label'] = paddle.static.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_model(architecture, image, classes_num, is_train):
    """
    Create a model

    Args:
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
    name = architecture["name"]
    params = architecture.get("params", {})
    if "is_test" in params:
        params['is_test'] = not is_train
    model = architectures.__dict__[name](class_dim=classes_num, **params)
    out = model(image)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
                use_mix=False,
                use_distillation=False):
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)

    Returns:
        loss(variable): loss variable
    """
    if use_mix:
        feed_y_a = paddle.reshape(feeds['feed_y_a'], [-1, 1])
        feed_y_b = paddle.reshape(feeds['feed_y_b'], [-1, 1])
        feed_lam = paddle.reshape(feeds['feed_lam'], [-1, 1])
    else:
        target = paddle.reshape(feeds['label'], [-1, 1])
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[0], out[1], out[2], target)

    if use_distillation:
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out, target)


def create_metric(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  use_distillation=False):
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
    label = paddle.reshape(feeds['label'], [-1, 1])
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
    softmax_out = F.softmax(out)

    fetchs = OrderedDict()
    # set top1 to fetchs
    top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
    fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True))
    # set topk to fetchs
    k = min(topk, classes_num)
    topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
    topk_name = 'top{}'.format(k)
    fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True))
    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
                  use_mix=False,
                  use_distillation=False):
    """
    Create fetchs as model outputs(included loss and measures),
    will call create_loss and create_metric(if use_mix).

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
                       use_distillation)
    fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
    if not use_mix:
        metric = create_metric(out, feeds, architecture, topk, classes_num,
                               use_distillation)
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr), lr


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = paddle.static.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.execution_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


def mixed_precision_optimizer(config, optimizer):
    use_fp16 = config.get('use_fp16', False)
    amp_scale_loss = config.get('amp_scale_loss', 1.0)
    use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
    if use_fp16:
        optimizer = fluid.contrib.mixed_precision.decorate(
            optimizer,
            init_loss_scaling=amp_scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    return optimizer


def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
        is_distributed(bool): whether to use distributed training method

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with paddle.static.program_guard(main_prog, startup_prog):
        with paddle.utils.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
T
Tingquan Gao 已提交
321
            use_dali = config.get('use_dali', False)
322
            use_distillation = config.get('use_distillation')
T
Tingquan Gao 已提交
323 324 325 326 327
            feeds = create_feeds(
                config.image_shape, use_mix=use_mix, use_dali=use_dali)
            if use_dali and use_mix:
                import dali
                feeds = dali.mix(feeds, config, is_train)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
            out = create_model(config.ARCHITECTURE, feeds['image'],
                               config.classes_num, is_train)
            fetchs = create_fetchs(
                out,
                feeds,
                config.ARCHITECTURE,
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
                use_mix=use_mix,
                use_distillation=use_distillation)
            lr_scheduler = None
            if is_train:
                optimizer, lr_scheduler = create_optimizer(config)
                optimizer = mixed_precision_optimizer(config, optimizer)
                if is_distributed:
                    optimizer = dist_optimizer(config, optimizer)

                optimizer.minimize(fetchs['loss'][0])
    return fetchs, lr_scheduler, feeds


def compile(config, program, loss_name=None, share_prog=None):
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name
        share_prog(): the shared program, used for evaluation during training

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = paddle.static.BuildStrategy()
    exec_strategy = paddle.static.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

    compiled_program = paddle.static.CompiledProgram(
        program).with_data_parallel(
            share_vars_from=share_prog,
            loss_name=loss_name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

    return compiled_program


total_step = 0

381

382 383 384 385 386 387 388 389 390
def run(dataloader,
        exe,
        program,
        feeds,
        fetchs,
        epoch=0,
        mode='train',
        config=None,
        vdl_writer=None,
391
        lr_scheduler=None):
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(paddle io dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
    if mode == "train":
        metric_list.append(AverageMeter('lr', 'f', need_avg=False))
    for m in metric_list:
        m.reset()
    batch_time = AverageMeter('elapse', '.3f')
T
Tingquan Gao 已提交
412 413
    use_dali = config.get('use_dali', False)
    dataloader = dataloader if use_dali else dataloader()
414
    tic = time.time()
T
Tingquan Gao 已提交
415
    for idx, batch in enumerate(dataloader):
L
littletomatodonkey 已提交
416 417 418
        # ignore the warmup iters
        if idx == 5:
            batch_time.reset()
L
littletomatodonkey 已提交
419 420 421 422 423 424 425 426 427
        if use_dali:
            batch_size = batch[0]["feed_image"].shape()[0]
            feed_dict = batch[0]
        else:
            batch_size = batch[0].shape()[0]
            feed_dict = {
                key.name: batch[idx]
                for idx, key in enumerate(feeds.values())
            }
428 429 430
        metrics = exe.run(program=program,
                          feed=feed_dict,
                          fetch_list=fetch_list)
431 432 433 434
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
            metric_list[i].update(np.mean(m), batch_size)
L
littletomatodonkey 已提交
435

436 437 438 439
        if mode == "train":
            metric_list[-1].update(lr_scheduler.get_lr())
        fetchs_str = ''.join([str(m.value) + ' '
                              for m in metric_list] + [batch_time.value]) + 's'
L
littletomatodonkey 已提交
440 441 442
        ips_info = " ips: {:.5f} images/sec.".format(batch_size /
                                                     batch_time.val)
        fetchs_str += ips_info
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

        if lr_scheduler is not None:
            if lr_scheduler.update_specified:
                curr_global_counter = lr_scheduler.step_each_epoch * epoch + idx
                update = max(
                    0, curr_global_counter - lr_scheduler.
                    update_start_step) % lr_scheduler.update_step_interval == 0
                if update:
                    lr_scheduler.step()
            else:
                lr_scheduler.step()

        if vdl_writer:
            global total_step
            logger.scaler('loss', metrics[0][0], total_step, vdl_writer)
            total_step += 1
L
littletomatodonkey 已提交
459
        if mode == 'valid':
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            if idx % config.get('print_interval', 10) == 0:
                logger.info("{:s} step:{:<4d} {:s}".format(mode, idx,
                                                           fetchs_str))
        else:
            epoch_str = "epoch:{:<3d}".format(epoch)
            step_str = "{:s} step:{:<4d}".format(mode, idx)

            if idx % config.get('print_interval', 10) == 0:
                logger.info("{:s} {:s} {:s}".format(
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
                    logger.coloring(fetchs_str, 'OKGREEN')))

    end_str = ''.join([str(m.mean) + ' '
                       for m in metric_list] + [batch_time.total]) + 's'
L
littletomatodonkey 已提交
476 477
    ips_info = "ips: {:.5f} images/sec.".format(batch_size * batch_time.count /
                                                batch_time.sum)
L
littletomatodonkey 已提交
478
    if mode == 'valid':
L
littletomatodonkey 已提交
479
        logger.info("END {:s} {:s}s {:s}".format(mode, end_str, ips_info))
480 481
    else:
        end_epoch_str = "END epoch:{:<3d}".format(epoch)
L
littletomatodonkey 已提交
482 483
        logger.info("{:s} {:s} {:s} {:s}".format(end_epoch_str, mode, end_str,
                                                 ips_info))
T
Tingquan Gao 已提交
484 485
    if use_dali:
        dataloader.reset()
486 487 488 489

    # return top1_acc in order to save the best model
    if mode == 'valid':
        return fetchs["top1"][1].avg