train.py 4.3 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
add ad  
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
19 20 21 22
import argparse
import os

import paddle.fluid as fluid
W
add ad  
WuHaobo 已提交
23 24
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.incubate.fleet.collective import fleet
W
WuHaobo 已提交
25 26 27

from ppcls.data import Reader
from ppcls.utils.config import get_config
W
add ad  
WuHaobo 已提交
28
from ppcls.utils.save_load import init_model, save_model
littletomatodonkey's avatar
littletomatodonkey 已提交
29
from ppcls.utils import logger
W
add ad  
WuHaobo 已提交
30
import program
W
WuHaobo 已提交
31 32 33 34 35 36 37 38


def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
W
WuHaobo 已提交
39
        default='configs/ResNet/ResNet50.yaml',
W
WuHaobo 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        help='config file path')
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
    fleet.init(role)

    config = get_config(args.config, overrides=args.override, show=True)
W
WuHaobo 已提交
56 57 58
    # assign the place
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id)
W
WuHaobo 已提交
59

W
WuHaobo 已提交
60 61
    # startup_prog is used to do some parameter init work,
    # and train prog is used to hold the network
W
WuHaobo 已提交
62 63 64
    startup_prog = fluid.Program()
    train_prog = fluid.Program()

littletomatodonkey's avatar
littletomatodonkey 已提交
65 66 67 68
    # best_top1_acc_list[0]: top1 acc
    # best_top1_acc_list[1]: epoch id
    best_top1_acc_list = [0.0, 0]

W
WuHaobo 已提交
69 70 71 72 73 74 75
    train_dataloader, train_fetchs = program.build(
        config, train_prog, startup_prog, is_train=True)

    if config.validate:
        valid_prog = fluid.Program()
        valid_dataloader, valid_fetchs = program.build(
            config, valid_prog, startup_prog, is_train=False)
W
WuHaobo 已提交
76
        # clone to prune some content which is irrelevant in valid_prog
W
WuHaobo 已提交
77 78
        valid_prog = valid_prog.clone(for_test=True)

W
WuHaobo 已提交
79
    # create the "Executor" with the statement of which place
W
WuHaobo 已提交
80 81
    exe = fluid.Executor(place=place)
    # only run startup_prog once to init
W
WuHaobo 已提交
82 83
    exe.run(startup_prog)

W
WuHaobo 已提交
84
    # load model from checkpoint or pretrained model
W
WuHaobo 已提交
85 86 87 88 89 90 91 92
    init_model(config, train_prog, exe)

    train_reader = Reader(config, 'train')()
    train_dataloader.set_sample_list_generator(train_reader, place)

    if config.validate:
        valid_reader = Reader(config, 'valid')()
        valid_dataloader.set_sample_list_generator(valid_reader, place)
W
WuHaobo 已提交
93 94
        compiled_valid_prog = program.compile(config, valid_prog)

W
WuHaobo 已提交
95 96
    compiled_train_prog = fleet.main_program
    for epoch_id in range(config.epochs):
W
WuHaobo 已提交
97
        # 1. train with train dataset
W
WuHaobo 已提交
98 99
        program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
                    epoch_id, 'train')
W
WuHaobo 已提交
100
        # 2. validate with validate dataset
W
WuHaobo 已提交
101
        if config.validate and epoch_id % config.valid_interval == 0:
littletomatodonkey's avatar
littletomatodonkey 已提交
102 103 104 105 106 107 108 109 110 111
            top1_acc = program.run(valid_dataloader, exe, compiled_valid_prog,
                                   valid_fetchs, epoch_id, 'valid')
            if top1_acc > best_top1_acc_list[0]:
                best_top1_acc_list[0] = top1_acc
                best_top1_acc_list[1] = epoch_id
                logger.info("Best top1 acc: {}, in epoch: {}".format(
                    best_top1_acc_list[0], best_top1_acc_list[1]))
                model_path = os.path.join(config.model_save_dir,
                                          config.ARCHITECTURE["name"])
                save_model(train_prog, model_path, "best_model")
W
WuHaobo 已提交
112

W
WuHaobo 已提交
113
        # 3. save the persistable model
W
WuHaobo 已提交
114 115
        if epoch_id % config.save_interval == 0:
            model_path = os.path.join(config.model_save_dir,
littletomatodonkey's avatar
littletomatodonkey 已提交
116
                                      config.ARCHITECTURE["name"])
W
WuHaobo 已提交
117 118 119 120 121 122
            save_model(train_prog, model_path, epoch_id)


if __name__ == '__main__':
    args = parse_args()
    main(args)