recognition_web_service.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from paddle_serving_server.web_service import WebService, Op
15 16
import logging
import numpy as np
17 18 19 20
import sys
import cv2
from paddle_serving_app.reader import *
import base64
21 22 23
import os
import faiss
import pickle
24
import json
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class DetOp(Op):
    def init_op(self):
        self.img_preprocess = Sequential([
            BGR2RGB(), Div(255.0),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False),
            Resize((640, 640)), Transpose((2, 0, 1))
        ])

        self.img_postprocess = RCNNPostprocess("label_list.txt", "output")
        self.threshold = 0.2
        self.max_det_results = 5

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        target_size = [640, 640]
        origin_shape = im.shape[:2]
        resize_h, resize_w = target_size
        im_scale_y = resize_h / float(origin_shape[0])
        im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        imgs = []
        raw_imgs = []
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
            raw_imgs.append(data)
            data = np.fromstring(data, np.uint8)
            raw_im = cv2.imdecode(data, cv2.IMREAD_COLOR)

            im_scale_y, im_scale_x = self.generate_scale(raw_im)
            im = self.img_preprocess(raw_im)
            
            imgs.append({
              "image": im[np.newaxis, :],
              "im_shape": np.array(list(im.shape[1:])).reshape(-1)[np.newaxis,:],
              "scale_factor": np.array([im_scale_y, im_scale_x]).astype('float32'),
            })
        self.raw_img = raw_imgs

        feed_dict = {
            "image":        np.concatenate([x["image"] for x in imgs], axis=0),
            "im_shape":     np.concatenate([x["im_shape"] for x in imgs], axis=0),
            "scale_factor": np.concatenate([x["scale_factor"] for x in imgs], axis=0)
        }
        return feed_dict, False,  None,  ""

    def postprocess(self, input_dicts, fetch_dict, log_id):
        boxes = self.img_postprocess(fetch_dict, visualize=False)
        boxes.sort(key = lambda x: x["score"], reverse = True)
        boxes = filter(lambda x: x["score"] >= self.threshold, boxes[:self.max_det_results])
84 85 86 87 88 89
        boxes = list(boxes)
        for i in range(len(boxes)):
            boxes[i]["bbox"][2] += boxes[i]["bbox"][0] - 1
            boxes[i]["bbox"][3] += boxes[i]["bbox"][1] - 1
        result = json.dumps(boxes)
        res_dict = {"bbox_result": result, "image": self.raw_img}
90 91 92
        return res_dict,  None,  ""

class RecOp(Op):
93 94
    def init_op(self):
        self.seq = Sequential([
95
            BGR2RGB(), Resize((224, 224)), 
96
            Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
97
                                False), Transpose((2, 0, 1))
98 99 100 101 102 103 104 105
        ])

        index_dir = "../../recognition_demo_data_v1.1/gallery_product/index"
        assert os.path.exists(os.path.join(
            index_dir, "vector.index")), "vector.index not found ..."
        assert os.path.exists(os.path.join(
            index_dir, "id_map.pkl")), "id_map.pkl not found ... "
        
B
Bin Lu 已提交
106
        self.searcher = faiss.read_index(
107 108 109 110 111
            os.path.join(index_dir, "vector.index"))
                
        with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
            self.id_map = pickle.load(fd)

112 113
        self.rec_nms_thresold = 0.05
        self.rec_score_thres = 0.5
114 115
        self.feature_normalize = True
        self.return_k = 1
116

117 118
    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
119 120 121 122 123 124 125 126 127 128 129 130
        raw_img = input_dict["image"][0]
        data = np.frombuffer(raw_img, np.uint8)
        origin_img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        dt_boxes = input_dict["bbox_result"]
        boxes = json.loads(dt_boxes)
        boxes.append({"category_id": 0,
                      "score": 1.0,
                      "bbox": [0, 0, origin_img.shape[1], origin_img.shape[0]]
                     })
        self.det_boxes = boxes

        #construct batch images for rec
131
        imgs = []
132 133
        for box in boxes:
            box = [int(x) for x in box["bbox"]]
134
            im = origin_img[box[1]: box[3], box[0]: box[2]].copy()
135 136
            img = self.seq(im)
            imgs.append(img[np.newaxis, :].copy())
137

138
        input_imgs = np.concatenate(imgs, axis=0)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        return {"x": input_imgs},  False,  None,  ""

    def nms_to_rec_results(self, results, thresh = 0.1):
        filtered_results = []
        x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
        y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
        x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
        y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
        scores = np.array([r["rec_scores"] for r in results])

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]
        while order.size > 0:
            i = order[0]
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])

            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = np.where(ovr <= thresh)[0]
            order = order[inds + 1]
            filtered_results.append(results[i])
        return filtered_results
166 167

    def postprocess(self, input_dicts, fetch_dict, log_id):
168 169 170 171 172 173 174 175
        batch_features = fetch_dict["features"]

        if self.feature_normalize:
            feas_norm = np.sqrt(
                np.sum(np.square(batch_features), axis=1, keepdims=True))
            batch_features = np.divide(batch_features, feas_norm)

        scores, docs = self.searcher.search(batch_features,  self.return_k)
176

177 178 179 180
        results = []
        for i in range(scores.shape[0]):
            pred = {}
            if scores[i][0] >= self.rec_score_thres:
181
                pred["bbox"] = [int(x) for x in self.det_boxes[i]["bbox"]]
182 183 184 185 186 187 188
                pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
                pred["rec_scores"] = scores[i][0]
                results.append(pred)
        
        #do nms
        results = self.nms_to_rec_results(results, self.rec_nms_thresold)
        return {"result": str(results)}, None, ""
189

190
class RecognitionService(WebService):
191
    def get_pipeline_response(self, read_op):
192 193 194
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op
195

196 197 198
product_recog_service = RecognitionService(name="recognition")
product_recog_service.prepare_pipeline_config("config.yml")
product_recog_service.run_service()