resnet.py 5.6 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

W
WuHaobo 已提交
15 16 17
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
W
WuHaobo 已提交
18 19 20 21

import math

__all__ = [
W
WuHaobo 已提交
22 23 24 25 26
    "ResNet18",
    "ResNet34",
    "ResNet50",
    "ResNet101",
    "ResNet152",
W
WuHaobo 已提交
27 28 29
]


W
WuHaobo 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=False)

        self._batch_norm = BatchNorm(num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, stride, shortcut=True):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)

W
WuHaobo 已提交
106

W
WuHaobo 已提交
107 108 109 110 111 112
class ResNet(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [50, 101, 152]
W
WuHaobo 已提交
113
        assert layers in supported_layers, \
W
WuHaobo 已提交
114 115
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
116

W
WuHaobo 已提交
117
        if layers == 50:
W
WuHaobo 已提交
118 119 120 121 122
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
W
WuHaobo 已提交
123
        num_channels = [64, 256, 512, 1024]
W
WuHaobo 已提交
124 125
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
126 127
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
128 129 130
            num_filters=64,
            filter_size=7,
            stride=2,
W
WuHaobo 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143
            act='relu')
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.bottleneck_block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels[block]
                        if i == 0 else num_filters[block] * 4,
W
WuHaobo 已提交
144 145
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
W
WuHaobo 已提交
146 147 148
                        shortcut=shortcut))
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True
W
WuHaobo 已提交
149

W
WuHaobo 已提交
150 151 152 153 154 155 156 157 158 159
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
W
WuHaobo 已提交
160
            param_attr=fluid.param_attr.ParamAttr(
W
WuHaobo 已提交
161
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
W
WuHaobo 已提交
162

W
WuHaobo 已提交
163 164 165 166 167 168 169 170 171
    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
        y = self.out(y)
        return y
W
WuHaobo 已提交
172

W
WuHaobo 已提交
173 174 175

def ResNet18(**kwargs):
    model = ResNet(layers=18, **kwargs)
W
WuHaobo 已提交
176 177 178
    return model


W
WuHaobo 已提交
179 180
def ResNet34(**kwargs):
    model = ResNet(layers=34, **kwargs)
W
WuHaobo 已提交
181 182 183
    return model


W
WuHaobo 已提交
184 185
def ResNet50(**kwargs):
    model = ResNet(layers=50, **kwargs)
W
WuHaobo 已提交
186 187 188
    return model


W
WuHaobo 已提交
189 190
def ResNet101(**kwargs):
    model = ResNet(layers=101, **kwargs)
W
WuHaobo 已提交
191 192 193
    return model


W
WuHaobo 已提交
194 195
def ResNet152(class_dim=1000):
    model = ResNet(layers=152, class_dim=class_dim)
W
WuHaobo 已提交
196
    return model