repvgg.py 12.6 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Code was based on https://github.com/DingXiaoH/RepVGG

jm_12138's avatar
jm_12138 已提交
17 18 19 20
import paddle.nn as nn
import paddle
import numpy as np

C
cuicheng01 已提交
21 22
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

littletomatodonkey's avatar
littletomatodonkey 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
MODEL_URLS = {
    "RepVGG_A0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams",
    "RepVGG_A1":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams",
    "RepVGG_A2":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams",
    "RepVGG_B0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams",
    "RepVGG_B1":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams",
    "RepVGG_B2":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams",
    "RepVGG_B1g2":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams",
    "RepVGG_B1g4":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams",
    "RepVGG_B2g4":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams",
    "RepVGG_B3g4":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams",
}
C
cuicheng01 已提交
45 46 47 48 49 50

__all__ = list(MODEL_URLS.keys())

optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
g2_map = {l: 2 for l in optional_groupwise_layers}
g4_map = {l: 4 for l in optional_groupwise_layers}
jm_12138's avatar
jm_12138 已提交
51 52 53


class ConvBN(nn.Layer):
L
littletomatodonkey 已提交
54 55 56 57 58 59 60
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1):
jm_12138's avatar
jm_12138 已提交
61
        super(ConvBN, self).__init__()
L
littletomatodonkey 已提交
62 63 64 65 66 67 68 69
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)
jm_12138's avatar
jm_12138 已提交
70 71 72 73 74 75 76 77 78
        self.bn = nn.BatchNorm2D(num_features=out_channels)

    def forward(self, x):
        y = self.conv(x)
        y = self.bn(y)
        return y


class RepVGGBlock(nn.Layer):
L
littletomatodonkey 已提交
79 80 81 82 83 84 85 86 87
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros'):
jm_12138's avatar
jm_12138 已提交
88
        super(RepVGGBlock, self).__init__()
89 90
        self.is_repped = False

jm_12138's avatar
jm_12138 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.padding_mode = padding_mode

        assert kernel_size == 3
        assert padding == 1

        padding_11 = padding - kernel_size // 2

        self.nonlinearity = nn.ReLU()

        self.rbr_identity = nn.BatchNorm2D(
L
littletomatodonkey 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            num_features=in_channels
        ) if out_channels == in_channels and stride == 1 else None
        self.rbr_dense = ConvBN(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups)
        self.rbr_1x1 = ConvBN(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=stride,
            padding=padding_11,
            groups=groups)
jm_12138's avatar
jm_12138 已提交
124 125

    def forward(self, inputs):
126 127 128 129 130 131
        if not self.training and not self.is_repped:
            self.rep()
            self.is_repped = True
        if self.training and self.is_repped:
            self.is_repped = False

jm_12138's avatar
jm_12138 已提交
132 133 134 135 136 137 138
        if not self.training:
            return self.nonlinearity(self.rbr_reparam(inputs))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)
L
littletomatodonkey 已提交
139 140
        return self.nonlinearity(
            self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
jm_12138's avatar
jm_12138 已提交
141

142
    def rep(self):
jm_12138's avatar
jm_12138 已提交
143
        if not hasattr(self, 'rbr_reparam'):
L
littletomatodonkey 已提交
144 145 146 147 148 149 150 151 152
            self.rbr_reparam = nn.Conv2D(
                in_channels=self.in_channels,
                out_channels=self.out_channels,
                kernel_size=self.kernel_size,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
                padding_mode=self.padding_mode)
jm_12138's avatar
jm_12138 已提交
153 154 155 156 157 158 159 160
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam.weight.set_value(kernel)
        self.rbr_reparam.bias.set_value(bias)

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
L
littletomatodonkey 已提交
161 162
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(
            kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
jm_12138's avatar
jm_12138 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, ConvBN):
            kernel = branch.conv.weight
            running_mean = branch.bn._mean
            running_var = branch.bn._variance
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn._epsilon
        else:
            assert isinstance(branch, nn.BatchNorm2D)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros(
                    (self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = paddle.to_tensor(kernel_value)
            kernel = self.id_tensor
            running_mean = branch._mean
            running_var = branch._variance
            gamma = branch.weight
            beta = branch.bias
            eps = branch._epsilon
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape((-1, 1, 1, 1))
        return kernel * t, beta - running_mean * gamma / std


class RepVGG(nn.Layer):
L
littletomatodonkey 已提交
201 202 203 204
    def __init__(self,
                 num_blocks,
                 width_multiplier=None,
                 override_groups_map=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
205
                 class_num=1000):
jm_12138's avatar
jm_12138 已提交
206 207 208 209 210 211 212 213 214 215
        super(RepVGG, self).__init__()

        assert len(width_multiplier) == 4
        self.override_groups_map = override_groups_map or dict()

        assert 0 not in self.override_groups_map

        self.in_planes = min(64, int(64 * width_multiplier[0]))

        self.stage0 = RepVGGBlock(
L
littletomatodonkey 已提交
216 217 218 219 220
            in_channels=3,
            out_channels=self.in_planes,
            kernel_size=3,
            stride=2,
            padding=1)
jm_12138's avatar
jm_12138 已提交
221 222 223 224 225 226 227 228 229 230
        self.cur_layer_idx = 1
        self.stage1 = self._make_stage(
            int(64 * width_multiplier[0]), num_blocks[0], stride=2)
        self.stage2 = self._make_stage(
            int(128 * width_multiplier[1]), num_blocks[1], stride=2)
        self.stage3 = self._make_stage(
            int(256 * width_multiplier[2]), num_blocks[2], stride=2)
        self.stage4 = self._make_stage(
            int(512 * width_multiplier[3]), num_blocks[3], stride=2)
        self.gap = nn.AdaptiveAvgPool2D(output_size=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
231
        self.linear = nn.Linear(int(512 * width_multiplier[3]), class_num)
jm_12138's avatar
jm_12138 已提交
232 233

    def _make_stage(self, planes, num_blocks, stride):
L
littletomatodonkey 已提交
234
        strides = [stride] + [1] * (num_blocks - 1)
jm_12138's avatar
jm_12138 已提交
235 236 237
        blocks = []
        for stride in strides:
            cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
L
littletomatodonkey 已提交
238 239 240 241 242 243 244 245
            blocks.append(
                RepVGGBlock(
                    in_channels=self.in_planes,
                    out_channels=planes,
                    kernel_size=3,
                    stride=stride,
                    padding=1,
                    groups=cur_groups))
jm_12138's avatar
jm_12138 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            self.in_planes = planes
            self.cur_layer_idx += 1
        return nn.Sequential(*blocks)

    def forward(self, x):
        out = self.stage0(x)
        out = self.stage1(out)
        out = self.stage2(out)
        out = self.stage3(out)
        out = self.stage4(out)
        out = self.gap(out)
        out = paddle.flatten(out, start_axis=1)
        out = self.linear(out)
        return out


C
cuicheng01 已提交
262 263 264 265 266 267 268 269 270 271 272
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
littletomatodonkey's avatar
littletomatodonkey 已提交
273

C
cuicheng01 已提交
274 275 276

def RepVGG_A0(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
277 278 279 280
        num_blocks=[2, 4, 14, 1],
        width_multiplier=[0.75, 0.75, 0.75, 2.5],
        override_groups_map=None,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
281 282
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_A0"], use_ssld=use_ssld)
C
cuicheng01 已提交
283
    return model
jm_12138's avatar
jm_12138 已提交
284 285


C
cuicheng01 已提交
286 287
def RepVGG_A1(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
288 289 290 291
        num_blocks=[2, 4, 14, 1],
        width_multiplier=[1, 1, 1, 2.5],
        override_groups_map=None,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
292 293
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_A1"], use_ssld=use_ssld)
C
cuicheng01 已提交
294
    return model
jm_12138's avatar
jm_12138 已提交
295 296


C
cuicheng01 已提交
297 298
def RepVGG_A2(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
299 300 301 302
        num_blocks=[2, 4, 14, 1],
        width_multiplier=[1.5, 1.5, 1.5, 2.75],
        override_groups_map=None,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
303 304
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_A2"], use_ssld=use_ssld)
C
cuicheng01 已提交
305
    return model
jm_12138's avatar
jm_12138 已提交
306 307


C
cuicheng01 已提交
308 309
def RepVGG_B0(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
310 311 312 313
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[1, 1, 1, 2.5],
        override_groups_map=None,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
314 315
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B0"], use_ssld=use_ssld)
C
cuicheng01 已提交
316
    return model
jm_12138's avatar
jm_12138 已提交
317 318


C
cuicheng01 已提交
319 320
def RepVGG_B1(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
321 322 323 324
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[2, 2, 2, 4],
        override_groups_map=None,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
325 326
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B1"], use_ssld=use_ssld)
C
cuicheng01 已提交
327
    return model
jm_12138's avatar
jm_12138 已提交
328 329


C
cuicheng01 已提交
330 331
def RepVGG_B1g2(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
332 333 334 335
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[2, 2, 2, 4],
        override_groups_map=g2_map,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
336 337
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B1g2"], use_ssld=use_ssld)
C
cuicheng01 已提交
338
    return model
jm_12138's avatar
jm_12138 已提交
339 340


C
cuicheng01 已提交
341 342
def RepVGG_B1g4(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
343 344 345 346
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[2, 2, 2, 4],
        override_groups_map=g4_map,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
347 348
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B1g4"], use_ssld=use_ssld)
C
cuicheng01 已提交
349
    return model
jm_12138's avatar
jm_12138 已提交
350 351


C
cuicheng01 已提交
352 353
def RepVGG_B2(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
354 355 356 357
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[2.5, 2.5, 2.5, 5],
        override_groups_map=None,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
358 359
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B2"], use_ssld=use_ssld)
C
cuicheng01 已提交
360
    return model
jm_12138's avatar
jm_12138 已提交
361 362


C
cuicheng01 已提交
363 364
def RepVGG_B2g4(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
365 366 367 368
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[2.5, 2.5, 2.5, 5],
        override_groups_map=g4_map,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
369 370
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B2g4"], use_ssld=use_ssld)
C
cuicheng01 已提交
371
    return model
jm_12138's avatar
jm_12138 已提交
372 373


C
cuicheng01 已提交
374 375
def RepVGG_B3g4(pretrained=False, use_ssld=False, **kwargs):
    model = RepVGG(
L
littletomatodonkey 已提交
376 377 378 379
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[3, 3, 3, 5],
        override_groups_map=g4_map,
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
380 381
    _load_pretrained(
        pretrained, model, MODEL_URLS["RepVGG_B3g4"], use_ssld=use_ssld)
C
cuicheng01 已提交
382
    return model