train.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))

from sys import version_info

import paddle
from paddle.distributed import fleet

from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils import logger
from tools.static import program
35
from save_load import init_model, save_model
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65


def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
        default='configs/ResNet/ResNet50.yaml',
        help='config file path')
    parser.add_argument(
        '--vdl_dir',
        type=str,
        default=None,
        help='VisualDL logging directory for image.')
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    fleet.init(is_collective=True)

    config = get_config(args.config, overrides=args.override, show=True)
    # assign the place
66
    use_gpu = config.get("use_gpu", False)
67
    use_xpu = config.get("use_xpu", False)
T
Tingquan Gao 已提交
68 69 70
    assert (
        use_gpu and use_xpu
    ) is not True, "gpu and xpu can not be true in the same time in static mode!"
71

72 73 74 75 76 77
    if use_gpu:
        place = paddle.set_device('gpu')
    elif use_xpu:
        place = paddle.set_device('xpu')
    else:
        place = paddle.set_device('cpu')
78 79 80 81 82 83 84 85 86

    # startup_prog is used to do some parameter init work,
    # and train prog is used to hold the network
    startup_prog = paddle.static.Program()
    train_prog = paddle.static.Program()

    best_top1_acc = 0.0  # best top1 acc record

    train_fetchs, lr_scheduler, train_feeds = program.build(
T
Tingquan Gao 已提交
87 88 89 90 91
        config,
        train_prog,
        startup_prog,
        is_train=True,
        is_distributed=config.get("is_distributed", True))
92 93 94 95

    if config.validate:
        valid_prog = paddle.static.Program()
        valid_fetchs, _, valid_feeds = program.build(
T
Tingquan Gao 已提交
96 97 98 99 100
            config,
            valid_prog,
            startup_prog,
            is_train=False,
            is_distributed=config.get("is_distributed", True))
101 102 103 104 105 106 107 108
        # clone to prune some content which is irrelevant in valid_prog
        valid_prog = valid_prog.clone(for_test=True)

    # create the "Executor" with the statement of which place
    exe = paddle.static.Executor(place)
    # Parameter initialization
    exe.run(startup_prog)

109 110 111
    # load pretrained models or checkpoints
    init_model(config, train_prog, exe)

T
Tingquan Gao 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125
    if not config.get('use_dali', False):
        train_dataloader = Reader(config, 'train', places=place)()
        if config.validate and paddle.distributed.get_rank() == 0:
            valid_dataloader = Reader(config, 'valid', places=place)()
            if use_xpu:
                compiled_valid_prog = valid_prog
            else:
                compiled_valid_prog = program.compile(config, valid_prog)
    else:
        assert use_gpu is True, "DALI only support gpu, please set use_gpu to True!"
        import dali
        train_dataloader = dali.train(config)
        if config.validate and paddle.distributed.get_rank() == 0:
            valid_dataloader = dali.val(config)
126
            compiled_valid_prog = program.compile(config, valid_prog)
127 128 129 130 131 132 133 134 135 136 137 138 139

    vdl_writer = None
    if args.vdl_dir:
        if version_info.major == 2:
            logger.info(
                "visualdl is just supported for python3, so it is disabled in python2..."
            )
        else:
            from visualdl import LogWriter
            vdl_writer = LogWriter(args.vdl_dir)

    for epoch_id in range(config.epochs):
        # 1. train with train dataset
140 141 142 143
        program.run(train_dataloader, exe, train_prog, train_feeds,
                    train_fetchs, epoch_id, 'train', config, vdl_writer,
                    lr_scheduler)
        if paddle.distributed.get_rank() == 0:
144 145 146
            # 2. validate with validate dataset
            if config.validate and epoch_id % config.valid_interval == 0:
                top1_acc = program.run(valid_dataloader, exe,
147 148
                                       compiled_valid_prog, valid_feeds,
                                       valid_fetchs, epoch_id, 'valid', config)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                if top1_acc > best_top1_acc:
                    best_top1_acc = top1_acc
                    message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
                        best_top1_acc, epoch_id)
                    logger.info("{:s}".format(logger.coloring(message, "RED")))
                    if epoch_id % config.save_interval == 0:

                        model_path = os.path.join(config.model_save_dir,
                                                  config.ARCHITECTURE["name"])
                        save_model(train_prog, model_path, "best_model")

            # 3. save the persistable model
            if epoch_id % config.save_interval == 0:
                model_path = os.path.join(config.model_save_dir,
                                          config.ARCHITECTURE["name"])
                save_model(train_prog, model_path, epoch_id)


if __name__ == '__main__':
    paddle.enable_static()
    args = parse_args()
    main(args)