metrics.py 3.2 KB
Newer Older
Y
yaohai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import average_precision_score
from sklearn.preprocessing import binarize

import numpy as np

littletomatodonkey's avatar
littletomatodonkey 已提交
28 29 30 31
__all__ = [
    "multi_hot_encode", "hamming_distance", "accuracy_score",
    "precision_recall_fscore", "mean_average_precision"
]
Y
yaohai 已提交
32 33 34 35 36 37 38


def multi_hot_encode(logits, threshold=0.5):
    """
    Encode logits to multi-hot by elementwise for multilabel
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
39
    return binarize(logits, threshold=threshold)
Y
yaohai 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


def hamming_distance(output, target):
    """
    Soft metric based label for multilabel classification
    Returns:
        The smaller the return value is, the better model is.
    """

    return hamming_loss(target, output)


def accuracy_score(output, target, base="sample"):
    """
    Hard metric for multilabel classification
    Args:
        output:
        target:
        base: ["sample", "label"], default="sample"
            if "sample", return metric score based sample,
            if "label", return metric score based label.
    Returns:
        accuracy:
    """

    assert base in ["sample", "label"], 'must be one of ["sample", "label"]'

    if base == "sample":
        accuracy = accuracy_metric(target, output)
    elif base == "label":
        mcm = multilabel_confusion_matrix(target, output)
        tns = mcm[:, 0, 0]
        fns = mcm[:, 1, 0]
        tps = mcm[:, 1, 1]
        fps = mcm[:, 0, 1]

littletomatodonkey's avatar
littletomatodonkey 已提交
76 77
        accuracy = (sum(tps) + sum(tns)) / (
            sum(tps) + sum(tns) + sum(fns) + sum(fps))
Y
yaohai 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90

    return accuracy


def precision_recall_fscore(output, target):
    """
    Metric based label for multilabel classification
    Returns:
        precisions:
        recalls:
        fscores:
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
91 92
    precisions, recalls, fscores, _ = precision_recall_fscore_support(target,
                                                                      output)
Y
yaohai 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    return precisions, recalls, fscores


def mean_average_precision(logits, target):
    """
    Calculate average precision
    Args:
        logits: probability from network before sigmoid or softmax
        target: ground truth, 0 or 1
    """
    if not (isinstance(logits, np.ndarray) and isinstance(target, np.ndarray)):
        raise TypeError("logits and target should be np.ndarray.")

    aps = []
    for i in range(target.shape[1]):
        ap = average_precision_score(target[:, i], logits[:, i])
        aps.append(ap)

    return np.mean(aps)