resnet.py 5.5 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

W
WuHaobo 已提交
15 16 17
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
W
WuHaobo 已提交
18 19 20 21

import math

__all__ = [
W
WuHaobo 已提交
22 23 24 25 26
    "ResNet18",
    "ResNet34",
    "ResNet50",
    "ResNet101",
    "ResNet152",
W
WuHaobo 已提交
27 28 29
]


W
WuHaobo 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=False)

        self._batch_norm = BatchNorm(num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, stride, shortcut=True):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)

S
shippingwang 已提交
80 81 82
        self.shortcut = shortcut

        if not self.shortcut:
W
WuHaobo 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)

W
WuHaobo 已提交
106

W
WuHaobo 已提交
107 108 109 110
class ResNet(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

S
shippingwang 已提交
111 112 113
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 18 or layers == 50:
W
WuHaobo 已提交
114 115 116 117 118
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
S
shippingwang 已提交
119 120
        else:
            raise ValueError('Input layer is not supported')
W
WuHaobo 已提交
121
        num_channels = [64, 256, 512, 1024]
W
WuHaobo 已提交
122 123
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
124 125
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
126 127 128
            num_filters=64,
            filter_size=7,
            stride=2,
W
WuHaobo 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141
            act='relu')
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.bottleneck_block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels[block]
                        if i == 0 else num_filters[block] * 4,
W
WuHaobo 已提交
142 143
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
W
WuHaobo 已提交
144 145 146
                        shortcut=shortcut))
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True
W
WuHaobo 已提交
147

W
WuHaobo 已提交
148 149 150 151 152 153 154 155 156 157
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
W
WuHaobo 已提交
158
            param_attr=fluid.param_attr.ParamAttr(
W
WuHaobo 已提交
159
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
W
WuHaobo 已提交
160

W
WuHaobo 已提交
161 162 163 164 165 166 167 168 169
    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
        y = self.out(y)
        return y
W
WuHaobo 已提交
170

W
WuHaobo 已提交
171 172 173

def ResNet18(**kwargs):
    model = ResNet(layers=18, **kwargs)
W
WuHaobo 已提交
174 175 176
    return model


W
WuHaobo 已提交
177 178
def ResNet34(**kwargs):
    model = ResNet(layers=34, **kwargs)
W
WuHaobo 已提交
179 180 181
    return model


W
WuHaobo 已提交
182 183
def ResNet50(**kwargs):
    model = ResNet(layers=50, **kwargs)
W
WuHaobo 已提交
184 185 186
    return model


W
WuHaobo 已提交
187 188
def ResNet101(**kwargs):
    model = ResNet(layers=101, **kwargs)
W
WuHaobo 已提交
189 190 191
    return model


S
shippingwang 已提交
192 193
def ResNet152(**kwargs):
    model = ResNet(layers=152, **kwargs)
W
WuHaobo 已提交
194
    return model