cae.py 31.8 KB
Newer Older
悟、's avatar
悟、 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Code was heavily based on https://github.com/PaddlePaddle/VIMER/blob/main/CAE/models/modeling_finetune.py
# reference: https://arxiv.org/abs/2202.03026

import collections
from itertools import repeat
import math
import numpy as np
from functools import partial

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

悟、's avatar
悟、 已提交
28 29 30 31 32 33 34 35 36 37 38
from ....utils.download import get_weights_path_from_url

MODEL_URLS = {
    "cae_base_patch16_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/cae_base_patch16_224_pretrained.pdparams",
    "cae_large_patch16_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/cae_large_patch16_224_pretrained.pdparams"
}

__all__ = list(MODEL_URLS.keys())

悟、's avatar
悟、 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


def trunc_normal_(tensor, mean=0., std=1.):
    nn.initializer.TruncatedNormal(mean=mean, std=std)(tensor)


def drop_path(x, drop_prob: float=0., training: bool=False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0], ) + (1, ) * (
        x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor.floor_()  # binarize
    output = x / keep_prob * random_tensor
    return output


class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features, bias_attr=True)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features, bias_attr=True)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement 
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 window_size=None,
                 attn_head_dim=None):
        super().__init__()

        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.zeros_ = nn.initializer.Constant(value=0.)

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias_attr=False)
        if qkv_bias:
            self.q_bias = self.create_parameter(
                [all_head_dim], default_initializer=self.zeros_)
            self.v_bias = self.create_parameter(
                [all_head_dim], default_initializer=self.zeros_)
        else:
            self.q_bias = None
            self.v_bias = None

        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (
                2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = self.create_parameter(
                [self.num_relative_distance, num_heads],
                default_initializer=self.zeros_)  # 2*Wh-1 * 2*Ww-1, nH
            # cls to token & token 2 cls & cls to cls

            # get pair-wise relative position index for each token inside the window
            coords_h = paddle.arange(window_size[0])
            coords_w = paddle.arange(window_size[1])
            coords = paddle.stack(paddle.meshgrid(
                [coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = paddle.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :,
                                             None] - coords_flatten[:,
                                                                    None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.transpose(
                [1, 2, 0])  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += window_size[
                0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * window_size[1] - 1
            relative_position_index = \
                paddle.zeros((window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(
                -1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer("relative_position_index",
                                 relative_position_index)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim, bias_attr=True)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, rel_pos_bias=None):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            k_bias = paddle.zeros_like(self.v_bias)
            k_bias.stop_gradient = True
            qkv_bias = paddle.concat((self.q_bias, k_bias, self.v_bias))
        # qkv = self.qkv(x).reshape([B, N, 3, self.num_heads, C // self.num_heads]).transpose([2, 0, 3, 1, 4])
        qkv = F.linear(x=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape([B, N, 3, self.num_heads, -1]).transpose(
            [2, 0, 3, 1, 4])
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @k.transpose([0, 1, 3, 2]))

        if self.relative_position_bias_table is not None:
            relative_position_bias = \
                self.relative_position_bias_table[self.relative_position_index.reshape([-1])].reshape([
                    self.window_size[0] * self.window_size[1] + 1,
                    self.window_size[0] * self.window_size[1] + 1, -1])  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.transpose(
                [2, 0, 1])  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if rel_pos_bias is not None:
            attn = attn + rel_pos_bias

        attn = F.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)

        x = (attn @v).transpose([0, 2, 1, 3]).reshape([B, N, -1])
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 init_values=None,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm,
                 window_size=None,
                 attn_head_dim=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            window_size=window_size,
            attn_head_dim=attn_head_dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)

        if init_values > 0:
            self.gamma_1 = self.create_parameter(
                [dim],
                default_initializer=nn.initializer.Constant(value=init_values))
            self.gamma_2 = self.create_parameter(
                [dim],
                default_initializer=nn.initializer.Constant(value=init_values))
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, rel_pos_bias=None):
        if self.gamma_1 is None:
            x = x + self.drop_path(
                self.attn(
                    self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(
                self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        to_2tuple = _ntuple(2)
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] //
                                                        patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0],
                            img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.in_chans = in_chans
        self.out_chans = embed_dim
        self.proj = nn.Conv2D(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=patch_size,
            bias_attr=True)

    def forward(self, x, **kwargs):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose([0, 2, 1])
        return x

    def _init_weights(self):
        fan_out = self.out_chans
        fan_in = self.patch_size[0] * self.patch_size[1] * self.in_chans
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.XavierUniform(fan_in, fan_out))  # MAE 
        bias_attr = paddle.ParamAttr(initializer=nn.initializer.Constant(0.0))
        return weight_attr, bias_attr


class RelativePositionBias(nn.Layer):
    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (
            2 * window_size[1] - 1) + 3
        self.zeros_ = nn.initializer.Constant(value=0.)
        self.relative_position_bias_table = self.create_parameter(
            [self.num_relative_distance, num_heads],
            default_initializer=self.zeros_)  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = paddle.arange(window_size[0])
        coords_w = paddle.arange(window_size[1])
        coords = paddle.stack(paddle.meshgrid(
            [coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = paddle.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :,
                                         None] - coords_flatten[:,
                                                                None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.transpose(
            [1, 2, 0])  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = \
            paddle.zeros((window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
        relative_position_index[1:, 1:] = relative_coords.sum(
            -1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index",
                             relative_position_index)

    def forward(self):
        relative_position_bias = \
            self.relative_position_bias_table[self.relative_position_index.reshape([-1])].reshape([
                self.window_size[0] * self.window_size[1] + 1,
                self.window_size[0] * self.window_size[1] + 1, -1])  # Wh*Ww,Wh*Ww,nH
        return relative_position_bias.transpose([2, 0, 1])  # nH, Wh*Ww, Wh*Ww


def get_sinusoid_encoding_table(n_position, d_hid, token=False):
    ''' Sinusoid position encoding table '''

    def get_position_angle_vec(position):
        return [
            position / np.power(10000, 2 * (hid_j // 2) / d_hid)
            for hid_j in range(d_hid)
        ]

    sinusoid_table = np.array(
        [get_position_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if token:
        sinusoid_table = np.concatenate(
            [sinusoid_table, np.zeros([1, d_hid])], dim=0)

    return paddle.to_tensor(sinusoid_table).unsqueeze(0)


class VisionTransformer(nn.Layer):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 in_chans=3,
                 class_num=1000,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer=nn.LayerNorm,
                 init_values=None,
                 use_abs_pos_emb=True,
                 use_rel_pos_bias=False,
                 use_shared_rel_pos_bias=False,
                 use_mean_pooling=True,
                 init_scale=0.001,
                 lin_probe=False,
                 sin_pos_emb=True,
                 args=None):
        super().__init__()
        self.class_num = class_num
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.use_mean_pooling = use_mean_pooling

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.zeros_ = nn.initializer.Constant(value=0.)
        self.ones_ = nn.initializer.Constant(value=1.)

        self.cls_token = self.create_parameter(
            [1, 1, embed_dim], default_initializer=self.zeros_)

        self.use_abs_pos_emb = use_abs_pos_emb
        if use_abs_pos_emb:
            self.pos_embed = self.create_parameter(
                [1, num_patches + 1, embed_dim],
                default_initializer=self.zeros_)
        elif sin_pos_emb:
            # sine-cosine positional embeddings is on the way
            self.pos_embed = self.create_parameter(
                [1, num_patches + 1, embed_dim],
                default_initializer=self.zeros_)
            self.pos_embed.set_value(
                self.build_2d_sincos_position_embedding(embed_dim))
            self.pos_embed.stop_gradient = True  # fixed sin-cos embedding
        else:
            self.pos_embed = None

        self.pos_drop = nn.Dropout(p=drop_rate)

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(
                window_size=self.patch_embed.patch_shape, num_heads=num_heads)
        else:
            self.rel_pos_bias = None

        dpr = [x.item() for x in paddle.linspace(0, drop_path_rate, depth)
               ]  # stochastic depth decay rule
        self.use_rel_pos_bias = use_rel_pos_bias
        self.blocks = nn.LayerList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                init_values=init_values,
                window_size=self.patch_embed.patch_shape
                if use_rel_pos_bias else None) for i in range(depth)
        ])
        self.norm = nn.Identity() if use_mean_pooling else norm_layer(
            embed_dim)

        self.lin_probe = lin_probe
        # NOTE: batch norm
        if lin_probe:
            # TODO
            from models.lincls_bn import LP_BatchNorm
            self.fc_norm = LP_BatchNorm(embed_dim, affine=False)
        else:
            if use_mean_pooling:
                self.fc_norm = norm_layer(embed_dim)
            else:
                self.fc_norm = None
        self.head = nn.Linear(embed_dim,
                              class_num) if class_num > 0 else nn.Identity()

        if self.pos_embed is not None and use_abs_pos_emb:
            trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        # trunc_normal_(self.mask_token, std=.02)
        trunc_normal_(self.head.weight, std=.02)
        self.apply(self._init_weights)
        self.fix_init_weight()

        self.head.weight.set_value(self.head.weight * init_scale)
        self.head.bias.set_value(self.head.bias * init_scale)

    def build_2d_sincos_position_embedding(self,
                                           embed_dim=768,
                                           temperature=10000.):
        h, w = self.patch_embed.patch_shape
        grid_w = paddle.arange(w, dtype=paddle.float32)
        grid_h = paddle.arange(h, dtype=paddle.float32)
        grid_w, grid_h = paddle.meshgrid(grid_w, grid_h)
        assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
        pos_dim = embed_dim // 4
        omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
        omega = 1. / (temperature**omega)
        out_w = paddle.einsum('m,d->md', grid_w.flatten(), omega)
        out_h = paddle.einsum('m,d->md', grid_h.flatten(), omega)
        pos_emb = paddle.concat(
            [
                paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h),
                paddle.cos(out_h)
            ],
            axis=1)[None, :, :]

        # if not self.use_mean_pooling:
        pe_token = paddle.zeros([1, 1, embed_dim], dtype=paddle.float32)
        pos_emb = paddle.concat([pe_token, pos_emb], axis=1)
        return pos_emb

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.set_value(param / math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight, layer_id + 1)
            rescale(layer.mlp.fc2.weight, layer_id + 1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                self.zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            self.zeros_(m.bias)
            self.ones_(m.weight)

    def get_num_layers(self):
        return len(self.blocks)

    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, class_num, global_pool=''):
        self.class_num = class_num
        self.head = nn.Linear(self.embed_dim,
                              class_num) if class_num > 0 else nn.Identity()

    def forward_features(self, x, is_train=True):
        x = self.patch_embed(x)
        batch_size, seq_len, _ = x.shape

        cls_tokens = self.cls_token.expand(
            [batch_size, -1,
             -1])  # stole cls_tokens impl from Phil Wang, thanks
        x = paddle.concat((cls_tokens, x), axis=1)
        if self.pos_embed is not None:
            if self.use_abs_pos_emb:
                x = x + self.pos_embed.expand(
                    [batch_size, -1, -1]).astype(x.dtype).clone().detach()
            else:
                x = x + self.pos_embed.expand(
                    [batch_size, -1, -1]).astype(x.dtype).clone().detach()

        x = self.pos_drop(x)

        rel_pos_bias = self.rel_pos_bias(
        ) if self.rel_pos_bias is not None else None
        for blk in self.blocks:
            x = blk(x, rel_pos_bias=rel_pos_bias)

        x = self.norm(x)
        if self.fc_norm is not None:
            t = x[:, 1:, :]
            if self.lin_probe:
                if self.use_mean_pooling:
                    return self.fc_norm(t.mean(1), is_train=is_train)
                else:
                    return self.fc_norm(x[:, 0], is_train=is_train)
            else:
                return self.fc_norm(t.mean(1))

        else:
            return x[:, 0]

    def forward(self, x, is_train=True):
        x = self.forward_features(x, is_train)
        x = self.head(x)
        return x


def _enable_linear_eval(model):
    zeros_ = nn.initializer.Constant(value=0.)
    normal_ = nn.initializer.Normal(mean=0.0, std=0.01)
    linear_keyword = 'head'
    head_norm = 'fc_norm'
    requires_grad = []
    for name, param in model.named_parameters():
        if name not in [
                '%s.weight' % linear_keyword, '%s.bias' % linear_keyword
        ] and head_norm not in name:
            param.stop_gradient = True
        else:
            requires_grad.append(name)
    # init the fc layer
    normal_(getattr(model, linear_keyword).weight)
    zeros_(getattr(model, linear_keyword).bias)

    return


def _load_pretrained(pretrained,
悟、's avatar
悟、 已提交
629
                     pretrained_url,
悟、's avatar
悟、 已提交
630 631 632 633 634 635
                     model,
                     model_keys,
                     model_ema_configs,
                     abs_pos_emb,
                     rel_pos_bias,
                     use_ssld=False):
悟、's avatar
悟、 已提交
636 637 638 639 640 641 642 643 644
    if pretrained is False:
        pass
    elif pretrained is True:
        local_weight_path = get_weights_path_from_url(pretrained_url).replace(
            ".pdparams", "")
        checkpoint = paddle.load(local_weight_path + ".pdparams")
    elif isinstance(pretrained, str):
        checkpoint = paddle.load(local_weight_path + ".pdparams")

悟、's avatar
悟、 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    checkpoint_model = None
    for model_key in model_keys.split('|'):
        if model_key in checkpoint:
            checkpoint_model = checkpoint[model_key]
            break

    if checkpoint_model is None:
        checkpoint_model = checkpoint
    state_dict = model.state_dict()
    all_keys = list(checkpoint_model.keys())
    # NOTE: remove all decoder keys
    all_keys = [key for key in all_keys if key.startswith('encoder.')]
    for key in all_keys:
        new_key = key.replace('encoder.', '')
        checkpoint_model[new_key] = checkpoint_model[key]
        checkpoint_model.pop(key)

    for key in list(checkpoint_model.keys()):
        if key.startswith('regressor_and_decoder.'):
            checkpoint_model.pop(key)
        if key.startswith('teacher_network.'):
            checkpoint_model.pop(key)

        # NOTE: replace norm with fc_norm
    for key in list(checkpoint_model.keys()):
        if key.startswith('norm.'):
            new_key = key.replace('norm.', 'fc_norm.')
            checkpoint_model[new_key] = checkpoint_model[key]
            checkpoint_model.pop(key)

    for k in ['head.weight', 'head.bias']:
        if k in checkpoint_model and checkpoint_model[k].shape != state_dict[
                k].shape:
            del checkpoint_model[k]

    if model.use_rel_pos_bias and "rel_pos_bias.relative_position_bias_table" in checkpoint_model:
        num_layers = model.get_num_layers()
        rel_pos_bias = checkpoint_model[
            "rel_pos_bias.relative_position_bias_table"]
        for i in range(num_layers):
            checkpoint_model["blocks.%d.attn.relative_position_bias_table" %
                             i] = rel_pos_bias.clone()

        checkpoint_model.pop("rel_pos_bias.relative_position_bias_table")

    all_keys = list(checkpoint_model.keys())

    for key in all_keys:
        if "relative_position_index" in key:
            checkpoint_model.pop(key)

        if "relative_position_bias_table" in key and rel_pos_bias:
            rel_pos_bias = checkpoint_model[key]
            src_num_pos, num_attn_heads = rel_pos_bias.size()
            dst_num_pos, _ = model.state_dict()[key].size()
            dst_patch_shape = model.patch_embed.patch_shape
            if dst_patch_shape[0] != dst_patch_shape[1]:
                raise NotImplementedError()
            num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (
                dst_patch_shape[1] * 2 - 1)
            src_size = int((src_num_pos - num_extra_tokens)**0.5)
            dst_size = int((dst_num_pos - num_extra_tokens)**0.5)
            if src_size != dst_size:
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]

                def geometric_progression(a, r, n):
                    return a * (1.0 - r**n) / (1.0 - r)

                left, right = 1.01, 1.5
                while right - left > 1e-6:
                    q = (left + right) / 2.0
                    gp = geometric_progression(1, q, src_size // 2)
                    if gp > dst_size // 2:
                        right = q
                    else:
                        left = q

                dis = []
                cur = 1
                for i in range(src_size // 2):
                    dis.append(cur)
                    cur += q**(i + 1)

                r_ids = [-_ for _ in reversed(dis)]

                x = r_ids + [0] + dis
                y = r_ids + [0] + dis

                t = dst_size // 2.0
                dx = np.arange(-t, t + 0.1, 1.0)
                dy = np.arange(-t, t + 0.1, 1.0)

                all_rel_pos_bias = []

                for i in range(num_attn_heads):
                    z = rel_pos_bias[:, i].view(src_size,
                                                src_size).float().numpy()
                    f = interpolate.interp2d(x, y, z, kind='cubic')
                    all_rel_pos_bias.append(
                        paddle.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(
                            rel_pos_bias.device))

                rel_pos_bias = paddle.concat(all_rel_pos_bias, axis=-1)

                new_rel_pos_bias = paddle.concat(
                    (rel_pos_bias, extra_tokens), axis=0)
                checkpoint_model[key] = new_rel_pos_bias

    # interpolate position embedding
    if 'pos_embed' in checkpoint_model and abs_pos_emb:
        pos_embed_checkpoint = checkpoint_model['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens)**
                        0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches**0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                            embedding_size).permute(0, 3, 1, 2)
            pos_tokens = paddle.nn.functional.interpolate(
                pos_tokens,
                size=(new_size, new_size),
                mode='bicubic',
                align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = paddle.concat((extra_tokens, pos_tokens), axis=1)
            checkpoint_model['pos_embed'] = new_pos_embed
    msg = model.set_state_dict(checkpoint_model)

    model_without_ddp = model
    n_parameters = sum(p.numel() for p in model.parameters()
                       if not p.stop_gradient).item()

    return


悟、's avatar
悟、 已提交
789
def cae_base_patch16_224(pretrained=True, use_ssld=False, **kwargs):
悟、's avatar
悟、 已提交
790 791 792 793 794 795
    config = kwargs.copy()
    enable_linear_eval = config.pop('enable_linear_eval')
    model_keys = config.pop('model_key')
    model_ema_configs = config.pop('model_ema')
    abs_pos_emb = config.pop('abs_pos_emb')
    rel_pos_bias = config.pop('rel_pos_bias')
悟、's avatar
悟、 已提交
796 797
    if pretrained in config:
        pretrained = config.pop('pretrained')
悟、's avatar
悟、 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    model = VisionTransformer(
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(
            nn.LayerNorm, epsilon=1e-6),
        **config)

    if enable_linear_eval:
        _enable_linear_eval(model)

    _load_pretrained(
        pretrained,
悟、's avatar
悟、 已提交
815
        MODEL_URLS["cae_base_patch16_224"],
悟、's avatar
悟、 已提交
816 817 818 819 820 821 822 823 824 825
        model,
        model_keys,
        model_ema_configs,
        abs_pos_emb,
        rel_pos_bias,
        use_ssld=False)

    return model


悟、's avatar
悟、 已提交
826
def cae_large_patch16_224(pretrained=True, use_ssld=False, **kwargs):
悟、's avatar
悟、 已提交
827 828 829 830 831 832
    config = kwargs.copy()
    enable_linear_eval = config.pop('enable_linear_eval')
    model_keys = config.pop('model_key')
    model_ema_configs = config.pop('model_ema')
    abs_pos_emb = config.pop('abs_pos_emb')
    rel_pos_bias = config.pop('rel_pos_bias')
悟、's avatar
悟、 已提交
833 834
    if pretrained in config:
        pretrained = config.pop('pretrained')
悟、's avatar
悟、 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

    model = VisionTransformer(
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(
            nn.LayerNorm, epsilon=1e-6),
        **kwargs)

    if enable_linear_eval:
        _enable_linear_eval(model)

    _load_pretrained(
        pretrained,
悟、's avatar
悟、 已提交
852
        MODEL_URLS["cae_large_patch16_224"],
悟、's avatar
悟、 已提交
853 854 855 856 857 858 859 860
        model,
        model_keys,
        model_ema_configs,
        abs_pos_emb,
        rel_pos_bias,
        use_ssld=False)

    return model