predict.py 3.4 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
import cv2
S
fix  
shippingwang 已提交
17
import time
W
WuHaobo 已提交
18

L
littletomatodonkey 已提交
19 20 21 22 23
import sys
sys.path.insert(0, ".")
import tools.infer.utils as utils
from tools.infer.utils import get_image_list

W
WuHaobo 已提交
24

25
def predict(args, predictor):
S
fix  
shippingwang 已提交
26
    input_names = predictor.get_input_names()
L
littletomatodonkey 已提交
27
    input_tensor = predictor.get_input_handle(input_names[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
28 29

    output_names = predictor.get_output_names()
L
littletomatodonkey 已提交
30
    output_tensor = predictor.get_output_handle(output_names[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33

    test_num = 500
    test_time = 0.0
S
fix  
shippingwang 已提交
34
    if not args.enable_benchmark:
35 36
        # for PaddleHubServing
        if args.hubserving:
L
littletomatodonkey 已提交
37
            img_list = [args.image_file]
38 39
        # for predict only
        else:
L
littletomatodonkey 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
            img_list = get_image_list(args.image_file)

        for idx, img_name in enumerate(img_list):
            if not args.hubserving:
                img = cv2.imread(img_name)[:, :, ::-1]
                assert img is not None, "Error in loading image: {}".format(
                    img_name)
            else:
                img = img_name
            inputs = utils.preprocess(img, args)
            inputs = np.expand_dims(
                inputs, axis=0).repeat(
                    args.batch_size, axis=0).copy()
            input_tensor.copy_from_cpu(inputs)

            predictor.run()

            output = output_tensor.copy_to_cpu()
            classes, scores = utils.postprocess(output, args)
            if args.hubserving:
                return classes, scores
            print("Current image file: {}".format(img_name))
            print("\ttop-1 class: {0}".format(classes[0]))
            print("\ttop-1 score: {0}".format(scores[0]))
S
fix  
shippingwang 已提交
64
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
65 66 67 68 69 70
        for i in range(0, test_num + 10):
            inputs = np.random.rand(args.batch_size, 3, 224,
                                    224).astype(np.float32)
            start_time = time.time()
            input_tensor.copy_from_cpu(inputs)

L
littletomatodonkey 已提交
71
            predictor.run()
S
fix  
shippingwang 已提交
72

littletomatodonkey's avatar
littletomatodonkey 已提交
73 74 75 76
            output = output_tensor.copy_to_cpu()
            output = output.flatten()
            if i >= 10:
                test_time += time.time() - start_time
littletomatodonkey's avatar
littletomatodonkey 已提交
77
            time.sleep(0.01)  # sleep for T4 GPU
S
fix  
shippingwang 已提交
78

littletomatodonkey's avatar
littletomatodonkey 已提交
79
        fp_message = "FP16" if args.use_fp16 else "FP32"
littletomatodonkey's avatar
littletomatodonkey 已提交
80 81
        trt_msg = "using tensorrt" if args.use_tensorrt else "not using tensorrt"
        print("{0}\t{1}\t{2}\tbatch size: {3}\ttime(ms): {4}".format(
82 83
            args.model, trt_msg, fp_message, args.batch_size, 1000 * test_time
            / test_num))
W
WuHaobo 已提交
84 85


86 87 88 89 90 91 92 93 94 95 96 97 98
def main(args):
    if not args.enable_benchmark:
        assert args.batch_size == 1
    else:
        assert args.model is not None
    # HALF precission predict only work when using tensorrt
    if args.use_fp16 is True:
        assert args.use_tensorrt is True

    predictor = utils.create_paddle_predictor(args)
    predict(args, predictor)


W
WuHaobo 已提交
99
if __name__ == "__main__":
100
    args = utils.parse_args()
L
littletomatodonkey 已提交
101
    main(args)