se_resnet_vd.py 12.3 KB
Newer Older
W
WuHaobo 已提交
1
#
2 3 4
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
5 6 7
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
8 9 10 11 12
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
13 14 15 16 17

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

18
import numpy as np
W
WuHaobo 已提交
19 20 21
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
22 23 24 25
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
26 27

__all__ = [
28 29
    "SE_ResNet18_vd", "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNet101_vd",
    "SE_ResNet152_vd", "SE_ResNet200_vd"
W
WuHaobo 已提交
30 31 32
]


33 34 35 36 37 38 39 40 41
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
W
WuHaobo 已提交
42
            act=None,
43 44 45 46 47
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)
53 54
        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
55 56
            num_filters=num_filters,
            filter_size=filter_size,
57
            stride=stride,
W
WuHaobo 已提交
58 59 60 61 62 63 64 65 66
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
67 68
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
69 70 71 72 73 74
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
96 97 98 99
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
100 101
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
102 103 104 105 106
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
107 108
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
109 110 111 112
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")
113
        self.scale = SELayer(
W
WuHaobo 已提交
114
            num_channels=num_filters * 4,
115
            num_filters=num_filters * 4,
W
WuHaobo 已提交
116 117 118
            reduction_ratio=reduction_ratio,
            name='fc_' + name)

119 120 121 122 123 124 125 126 127 128
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut
W
WuHaobo 已提交
129

130 131 132 133 134
    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)
W
WuHaobo 已提交
135

136 137 138 139 140 141 142 143 144 145
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=scale)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


littletomatodonkey's avatar
littletomatodonkey 已提交
146
class BasicBlock(fluid.dygraph.Layer):
147 148 149 150 151 152 153 154
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
155
        super(BasicBlock, self).__init__()
156 157 158
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
159 160 161
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
162
            act='relu',
W
WuHaobo 已提交
163
            name=name + "_branch2a")
164 165
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
166 167 168 169
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
170 171

        self.scale = SELayer(
W
WuHaobo 已提交
172
            num_channels=num_filters,
173
            num_filters=num_filters,
W
WuHaobo 已提交
174 175
            reduction_ratio=reduction_ratio,
            name='fc_' + name)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        scale = self.scale(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=scale)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class SELayer(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            act="relu",
            param_attr=ParamAttr(
W
WuHaobo 已提交
218
                initializer=fluid.initializer.Uniform(-stdv, stdv),
219
                name=name + "_sqz_weights"),
W
WuHaobo 已提交
220
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
221 222 223 224 225 226 227

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            act="sigmoid",
            param_attr=ParamAttr(
W
WuHaobo 已提交
228
                initializer=fluid.initializer.Uniform(-stdv, stdv),
229
                name=name + "_exc_weights"),
W
WuHaobo 已提交
230 231
            bias_attr=ParamAttr(name=name + '_exc_offset'))

232 233 234 235 236 237 238 239 240
    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = fluid.layers.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        excitation = self.excitation(squeeze)
        excitation = fluid.layers.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out
W
WuHaobo 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

class SE_ResNet_vd(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(SE_ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
320
                    basic_block = self.add_sublayer(
321
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
322
                        BasicBlock(
323 324 325 326 327 328 329
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
330
                    self.block_list.append(basic_block)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                    shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc6_weights"),
            bias_attr=ParamAttr(name="fc6_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def SE_ResNet18_vd(**args):
    model = SE_ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
363 364 365
    return model


366 367
def SE_ResNet34_vd(**args):
    model = SE_ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
368 369 370
    return model


371 372
def SE_ResNet50_vd(**args):
    model = SE_ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
373 374 375
    return model


376 377
def SE_ResNet101_vd(**args):
    model = SE_ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
378 379 380
    return model


381 382
def SE_ResNet152_vd(**args):
    model = SE_ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
383 384 385
    return model


386 387
def SE_ResNet200_vd(**args):
    model = SE_ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
388
    return model