resnet.py 9.2 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
W
WuHaobo 已提交
21
import paddle.fluid as fluid
22
from paddle.fluid.param_attr import ParamAttr
W
WuHaobo 已提交
23
from paddle.fluid.layer_helper import LayerHelper
24
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
W
WuHaobo 已提交
25 26 27

import math

28
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
W
WuHaobo 已提交
29 30


W
WuHaobo 已提交
31 32 33 34 35 36 37
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
38 39
                 act=None,
                 name=None):
W
WuHaobo 已提交
40 41 42 43 44 45 46 47 48 49
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
50
            param_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
51
            bias_attr=False)
52 53 54 55 56 57 58 59 60 61 62
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
W
WuHaobo 已提交
63 64 65 66 67 68 69 70

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
71 72 73 74 75 76
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
W
WuHaobo 已提交
77 78 79 80 81 82
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
83 84
            act="relu",
            name=name + "_branch2a")
W
WuHaobo 已提交
85 86 87 88 89
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
90 91
            act="relu",
            name=name + "_branch2b")
W
WuHaobo 已提交
92 93 94 95
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
96 97
            act=None,
            name=name + "_branch2c")
W
WuHaobo 已提交
98 99 100 101 102 103

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
104 105
                stride=stride,
                name=name + "_branch1")
W
WuHaobo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

123 124 125 126
        layer_helper = LayerHelper(self.full_name(), act="relu")
        return layer_helper.append_activation(y)


littletomatodonkey's avatar
littletomatodonkey 已提交
127
class BasicBlock(fluid.dygraph.Layer):
128 129 130 131 132 133
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
134
        super(BasicBlock, self).__init__()
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv1)

        layer_helper = LayerHelper(self.full_name(), act="relu")
W
WuHaobo 已提交
171 172
        return layer_helper.append_activation(y)

W
WuHaobo 已提交
173

W
WuHaobo 已提交
174 175 176 177 178
class ResNet(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

        self.layers = layers
179
        supported_layers = [18, 34, 50, 101, 152]
W
WuHaobo 已提交
180
        assert layers in supported_layers, \
W
WuHaobo 已提交
181 182
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
183

184 185 186
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
W
WuHaobo 已提交
187 188 189 190 191
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
192 193
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
W
WuHaobo 已提交
194 195
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
196 197
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
198 199 200
            num_filters=64,
            filter_size=7,
            stride=2,
201 202
            act="relu",
            name="conv1")
W
WuHaobo 已提交
203
        self.pool2d_max = Pool2D(
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            pool_size=3, pool_stride=2, pool_padding=1, pool_type="max")

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
234
                    basic_block = self.add_sublayer(
235
                        conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
236
                        BasicBlock(
237 238 239 240 241 242
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
243
                    self.block_list.append(basic_block)
244
                    shortcut = True
W
WuHaobo 已提交
245

W
WuHaobo 已提交
246 247 248
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

249
        self.pool2d_avg_channels = num_channels[-1] * 2
W
WuHaobo 已提交
250

251
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
W
WuHaobo 已提交
252 253

        self.out = Linear(
254
            self.pool2d_avg_channels,
W
WuHaobo 已提交
255
            class_dim,
256 257 258 259
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))
W
WuHaobo 已提交
260

W
WuHaobo 已提交
261 262 263
    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
264 265
        for block in self.block_list:
            y = block(y)
W
WuHaobo 已提交
266
        y = self.pool2d_avg(y)
267
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
W
WuHaobo 已提交
268 269
        y = self.out(y)
        return y
W
WuHaobo 已提交
270

W
WuHaobo 已提交
271

272 273
def ResNet18(**args):
    model = ResNet(layers=18, **args)
W
WuHaobo 已提交
274 275 276
    return model


277 278
def ResNet34(**args):
    model = ResNet(layers=34, **args)
W
WuHaobo 已提交
279 280 281
    return model


282 283
def ResNet50(**args):
    model = ResNet(layers=50, **args)
W
WuHaobo 已提交
284 285 286
    return model


287 288
def ResNet101(**args):
    model = ResNet(layers=101, **args)
W
WuHaobo 已提交
289 290 291
    return model


292 293
def ResNet152(**args):
    model = ResNet(layers=152, **args)
W
WuHaobo 已提交
294
    return model