hubconf.py 4.9 KB
Newer Older
L
for hub  
lyuwenyu 已提交
1

L
lyuwenyu 已提交
2
dependencies = ['paddle', 'numpy']
L
for hub  
lyuwenyu 已提交
3

L
lyuwenyu 已提交
4
import paddle
L
for hub  
lyuwenyu 已提交
5

L
lyuwenyu 已提交
6 7
from ppcls.modeling.architectures import alexnet as _alexnet
from ppcls.modeling.architectures import vgg as _vgg 
L
lyuwenyu 已提交
8 9 10 11 12
from ppcls.modeling.architectures import resnet as _resnet 
# _checkpoints = {
#     'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
#     'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
# }
L
lyuwenyu 已提交
13

L
lyuwenyu 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
def _load_pretrained_urls():
    '''Load pretrained model parameters url from README.md
    '''
    import re
    from collections import OrderedDict

    with open('./README.md', 'r') as f:
        lines = f.readlines()
        lines = [lin for lin in lines if lin.strip().startswith('|') and 'Download link' in lin]
    
    urls = OrderedDict()
    for lin in lines:
        try:
            name = re.findall(r'\|(.*?)\|', lin)[0].strip().replace('<br>', '')
            url = re.findall(r'\((.*?)\)', lin)[-1].strip()
            if name in url:
                urls[name] = url
        except:
            pass

    return urls


_checkpoints = _load_pretrained_urls()
L
lyuwenyu 已提交
38

L
lyuwenyu 已提交
39

L
lyuwenyu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

def AlexNet(**kwargs):
    '''AlexNet
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _alexnet.AlexNet(**kwargs)
    if pretrained:
        assert 'AlexNet' in _checkpoints, 'Not provide `AlexNet` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['AlexNet'])
        model.set_state_dict(paddle.load(path))

    return model



def VGG11(**kwargs):
    '''VGG11
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _vgg.VGG11(**kwargs)
    if pretrained:
        assert 'VGG11' in _checkpoints, 'Not provide `VGG11` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG11'])
        model.set_state_dict(paddle.load(path))

    return model


def VGG13(**kwargs):
    '''VGG13
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _vgg.VGG13(**kwargs)
    if pretrained:
        assert 'VGG13' in _checkpoints, 'Not provide `VGG13` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG13'])
        model.set_state_dict(paddle.load(path))

    return model


def VGG16(**kwargs):
    '''VGG16
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _vgg.VGG16(**kwargs)
    if pretrained:
        assert 'VGG16' in _checkpoints, 'Not provide `VGG16` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG16'])
        model.set_state_dict(paddle.load(path))

    return model


def VGG19(**kwargs):
    '''VGG19
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _vgg.VGG19(**kwargs)
    if pretrained:
        assert 'VGG19' in _checkpoints, 'Not provide `VGG19` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG19'])
        model.set_state_dict(paddle.load(path))

    return model




L
lyuwenyu 已提交
114 115
def ResNet18(**kwargs):
    '''ResNet18
L
for hub  
lyuwenyu 已提交
116
    '''
L
lyuwenyu 已提交
117 118
    pretrained = kwargs.pop('pretrained', False)

L
lyuwenyu 已提交
119
    model = _resnet.ResNet18(**kwargs)
L
lyuwenyu 已提交
120
    if pretrained:
L
lyuwenyu 已提交
121
        assert 'ResNet18' in _checkpoints, 'Not provide `ResNet18` pretrained model.'
L
lyuwenyu 已提交
122 123 124
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet18'])
        model.set_state_dict(paddle.load(path))

L
for hub  
lyuwenyu 已提交
125 126
    return model

L
lyuwenyu 已提交
127 128 129 130

def ResNet34(**kwargs):
    '''ResNet34
    '''
L
lyuwenyu 已提交
131 132 133 134 135 136 137
    pretrained = kwargs.pop('pretrained', False)

    model = _resnet.ResNet34(**kwargs)
    if pretrained:
        assert 'ResNet34' in _checkpoints, 'Not provide `ResNet34` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet34'])
        model.set_state_dict(paddle.load(path))
L
lyuwenyu 已提交
138

L
lyuwenyu 已提交
139
    return model
L
lyuwenyu 已提交
140 141


L
lyuwenyu 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def ResNet50(**kwargs):
    '''ResNet50
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _resnet.ResNet50(**kwargs)
    if pretrained:
        assert 'ResNet50' in _checkpoints, 'Not provide `ResNet50` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet50'])
        model.set_state_dict(paddle.load(path))

    return model


def ResNet101(**kwargs):
    '''ResNet101
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _resnet.ResNet101(**kwargs)
    if pretrained:
        assert 'ResNet101' in _checkpoints, 'Not provide `ResNet101` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet101'])
        model.set_state_dict(paddle.load(path))

    return model


def ResNet152(**kwargs):
    '''ResNet152
    '''
    pretrained = kwargs.pop('pretrained', False)

    model = _resnet.ResNet152(**kwargs)
    if pretrained:
        assert 'ResNet152' in _checkpoints, 'Not provide `ResNet152` pretrained model.'
        path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet152'])
        model.set_state_dict(paddle.load(path))

    return model