preprocess_op.cpp 2.6 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <include/preprocess_op.h>

namespace PaddleClas {

void Permute::Run(const cv::Mat *im, float *data) {
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
  }
}

void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
                    const std::vector<float> &scale, const bool is_scale) {
  double e = 1.0;
  if (is_scale) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
    }
  }
}

void CenterCropImg::Run(cv::Mat &img, const int crop_size) {
  int resize_w = img.cols;
  int resize_h = img.rows;
  int w_start = int((resize_w - crop_size) / 2);
  int h_start = int((resize_h - crop_size) / 2);
  cv::Rect rect(w_start, h_start, crop_size, crop_size);
  img = img(rect);
}

void ResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
                    float &ratio_h, float &ratio_w) {
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  if (h < w) {
    ratio = float(max_size_len) / float(h);
  } else {
    ratio = float(max_size_len) / float(w);
  }

  int resize_h = int(float(h) * ratio);
  int resize_w = int(float(w) * ratio);

  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

  ratio_h = float(resize_h) / float(h);
  ratio_w = float(resize_w) / float(w);
}

} // namespace PaddleClas