cae_base_patch16_224_finetune.yaml 3.7 KB
Newer Older
悟、's avatar
悟、 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 200
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference

# model architecture
Arch:
  name: cae_base_patch16_224
  class_num: 4
  drop_rate: 0.0
  drop_path_rate: 0.1
  attn_drop_rate: 0.0

  use_mean_pooling: True
  init_scale: 0.001
  use_rel_pos_bias: True
  use_abs_pos_emb: False
  init_values: 0.1
  lin_probe: False

  sin_pos_emb: True

  abs_pos_emb: False
  enable_linear_eval: False
  model_key: model|module|state_dict
  rel_pos_bias: True
  model_ema:
    enable_model_ema: False 
    model_ema_decay: 0.9999
    model_ema_force_cpu: False
  pretrained: ./pretrained/vit_base_cae_pretrained.pdparams

# loss function config for traing/eval process
Loss:
  Train:
    - SoftTargetCrossEntropy:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: AdamWDL
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.05
  layerwise_decay: 0.65
  lr:
    name: Cosine
    learning_rate: 0.004
    eta_min: 1e-6
    warmup_epoch: 10
    warmup_start_lr: 1e-6


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/paddle-job-153869-0/train_eval_data/images
      cls_label_path: ./dataset/paddle-job-153869-0/train_eval_data/train_data_list.txt
      batch_transform_ops:
        - MixupCutmixHybrid:
            mixup_alpha: 0.8
            cutmix_alpha: 1.0
            switch_prob: 0.5
            num_classes: 4
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
            interpolation: bilinear
        - RandFlipImage:
            flip_code: 1
        - RandAugment:
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - RandomErasing:
            EPSILON: 0.5
            sl: 0.02
            sh: 0.3
            r1: 0.3
      delimiter: '	'

    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: True
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/paddle-job-153869-0/train_eval_data/images
      cls_label_path: ./dataset/paddle-job-153869-0/train_eval_data/eval_data_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
      delimiter: '	'
    
    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.5, 0.5, 0.5]
        std: [0.5, 0.5, 0.5]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Train:
    - TopkAcc:
        topk: [1, 5]
  Eval:
    - TopkAcc:
        topk: [1, 5]