models_intro.md 38.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4
# 模型库概览

## 概述

C
cuicheng01 已提交
5
基于ImageNet1k分类数据集,PaddleClas支持的36种系列分类网络结构以及对应的175个图像分类预训练模型如下所示,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现。
littletomatodonkey's avatar
littletomatodonkey 已提交
6 7 8

## 评估环境
* CPU的评估环境基于骁龙855(SD855)。
C
cuicheng01 已提交
9 10
* Intel CPU的评估环境基于Intel(R) Xeon(R) Gold 6148。
* GPU评估环境基于V100和TensorRT。
littletomatodonkey's avatar
littletomatodonkey 已提交
11

W
WuHaobo 已提交
12

littletomatodonkey's avatar
littletomatodonkey 已提交
13 14
![](../../images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png)

D
dyning 已提交
15 16
![](../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg)

W
WuHaobo 已提交
17 18
![](../../images/models/mobile_arm_top1.png)

littletomatodonkey's avatar
littletomatodonkey 已提交
19

littletomatodonkey's avatar
littletomatodonkey 已提交
20
> 如果您觉得此文档对您有帮助,欢迎star我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22


D
dyning 已提交
23
## 预训练模型列表及下载地址
C
cuicheng01 已提交
24

W
WuHaobo 已提交
25
- ResNet及其Vd系列
26
  - ResNet系列<sup>[[1](#ref1)]</sup>([论文地址](http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html))
L
littletomatodonkey 已提交
27 28 29 30 31
    - [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams)
    - [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams)
    - [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams)
    - [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams)
    - [ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams)
32
  - ResNet_vc、ResNet_vd系列<sup>[[2](#ref2)]</sup>([论文地址](https://arxiv.org/abs/1812.01187))
L
littletomatodonkey 已提交
33 34 35 36 37 38 39 40 41 42 43 44
    - [ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams)
    - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams)
    - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams)
    - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams)
    - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams)
    - [ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams)
    - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams)
    - [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams)
    - [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams)
    - [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams)
    - [Fix_ResNet50_vd_ssld_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNet50_vd_ssld_v2_pretrained.pdparams)
    - [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams)
W
WuHaobo 已提交
45 46


C
cuicheng01 已提交
47
- 轻量级模型系列
G
gaotingquan 已提交
48
  - PP-LCNet系列<sup>[[28](#ref28)]</sup>([论文地址](https://arxiv.org/pdf/2109.15099.pdf))
C
cuicheng01 已提交
49 50 51 52 53 54 55 56 57 58 59
    - [PPLCNet_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams)
     - [PPLCNet_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams)
    - [PPLCNet_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams)
    - [PPLCNet_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams)
    - [PPLCNet_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams)
    - [PPLCNet_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams)
    - [PPLCNet_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams)
    - [PPLCNet_x2_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams)
    - [PPLCNet_x0_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5__ssld_pretrained.pdparams)
    - [PPLCNet_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams)
    - [PPLCNet_x2_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5__ssld_pretrained.pdparams)
60
  - MobileNetV3系列<sup>[[3](#ref3)]</sup>([论文地址](https://arxiv.org/abs/1905.02244))
L
littletomatodonkey 已提交
61 62 63 64 65 66 67 68 69 70 71
    - [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams)
    - [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams)
    - [MobileNetV3_large_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams)
    - [MobileNetV3_large_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams)
    - [MobileNetV3_large_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams)
    - [MobileNetV3_small_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams)
    - [MobileNetV3_small_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams)
    - [MobileNetV3_small_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams)
    - [MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams)
    - [MobileNetV3_small_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams)
    - [MobileNetV3_large_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)
L
littletomatodonkey 已提交
72
    - [MobileNetV3_large_x1_0_ssld_int8]()(coming soon)
L
littletomatodonkey 已提交
73
    - [MobileNetV3_small_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)
74
  - MobileNetV2系列<sup>[[4](#ref4)]</sup>([论文地址](https://arxiv.org/abs/1801.04381))
L
littletomatodonkey 已提交
75 76 77 78 79 80 81
    - [MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams)
    - [MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams)
    - [MobileNetV2_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams)
    - [MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams)
    - [MobileNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams)
    - [MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams)
    - [MobileNetV2_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)
82
  - MobileNetV1系列<sup>[[5](#ref5)]</sup>([论文地址](https://arxiv.org/abs/1704.04861))
L
littletomatodonkey 已提交
83 84 85 86 87
    - [MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams)
    - [MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams)
    - [MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams)
    - [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams)
    - [MobileNetV1_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams)
88
  - ShuffleNetV2系列<sup>[[6](#ref6)]</sup>([论文地址](https://arxiv.org/abs/1807.11164))
L
littletomatodonkey 已提交
89 90 91 92 93 94 95
    - [ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams)
    - [ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams)
    - [ShuffleNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams)
    - [ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams)
    - [ShuffleNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams)
    - [ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams)
    - [ShuffleNetV2_swish](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams)
96
  - GhostNet系列<sup>[[23](#ref23)]</sup>([论文地址](https://arxiv.org/pdf/1911.11907.pdf))
L
littletomatodonkey 已提交
97 98 99 100
    - [GhostNet_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams)
    - [GhostNet_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams)
    - [GhostNet_x1_3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams)
    - [GhostNet_x1_3_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)
C
cuicheng01 已提交
101 102 103 104 105 106 107 108 109 110
  - MixNet系列<sup>[[29](#ref29)]</sup>([论文地址](https://arxiv.org/pdf/1907.09595.pdf))
    - [MixNet_S](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams)
    - [MixNet_M](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams)
    - [MixNet_L](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams)
  - ReXNet系列<sup>[[30](#ref30)]</sup>([论文地址](https://arxiv.org/pdf/2007.00992.pdf))
    - [ReXNet_1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams)
    - [ReXNet_1_3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams)
    - [ReXNet_1_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams)
    - [ReXNet_2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams)
    - [ReXNet_3_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams)
G
gaotingquan 已提交
111

W
WuHaobo 已提交
112 113

- SEResNeXt与Res2Net系列
114
  - ResNeXt系列<sup>[[7](#ref7)]</sup>([论文地址](https://arxiv.org/abs/1611.05431))
L
littletomatodonkey 已提交
115 116 117 118 119 120
    - [ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams)
    - [ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams)
    - [ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams)
    - [ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams)
    - [ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams)
    - [ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams)
W
WuHaobo 已提交
121
  - ResNeXt_vd系列
L
littletomatodonkey 已提交
122 123 124 125 126 127
    - [ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams)
    - [ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams)
    - [ResNeXt101_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams)
    - [ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams)
    - [ResNeXt152_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams)
    - [ResNeXt152_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams)
128
  - SE_ResNet_vd系列<sup>[[8](#ref8)]</sup>([论文地址](https://arxiv.org/abs/1709.01507))
L
littletomatodonkey 已提交
129 130 131
    - [SE_ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams)
    - [SE_ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams)
    - [SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams)
W
WuHaobo 已提交
132
  - SE_ResNeXt系列
L
littletomatodonkey 已提交
133 134
    - [SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams)
    - [SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams)
W
WuHaobo 已提交
135
  - SE_ResNeXt_vd系列
L
littletomatodonkey 已提交
136 137
    - [SE_ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams)
    - [SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams)
138
  - Res2Net系列<sup>[[9](#ref9)]</sup>([论文地址](https://arxiv.org/abs/1904.01169))
L
littletomatodonkey 已提交
139 140 141 142 143 144 145 146
    - [Res2Net50_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams)
    - [Res2Net50_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams)
    - [Res2Net50_vd_26w_4s_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams)
    - [Res2Net50_14w_8s](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams)
    - [Res2Net101_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams)
    - [Res2Net101_vd_26w_4s_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams)
    - [Res2Net200_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams)
    - [Res2Net200_vd_26w_4s_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams)
W
WuHaobo 已提交
147 148 149


- Inception系列
150
  - GoogLeNet系列<sup>[[10](#ref10)]</sup>([论文地址](https://arxiv.org/pdf/1409.4842.pdf))
L
littletomatodonkey 已提交
151
    - [GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams)
152
  - InceptionV3系列<sup>[[26](#ref26)]</sup>([论文地址](https://arxiv.org/abs/1512.00567))
L
littletomatodonkey 已提交
153
    - [InceptionV3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams)
154
  - InceptionV4系列<sup>[[11](#ref11)]</sup>([论文地址](https://arxiv.org/abs/1602.07261))
L
littletomatodonkey 已提交
155
    - [InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams)
156
  - Xception系列<sup>[[12](#ref12)]</sup>([论文地址](http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html))
L
littletomatodonkey 已提交
157 158 159 160 161
    - [Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams)
    - [Xception41_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams)
    - [Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams)
    - [Xception65_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams)
    - [Xception71](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams)
W
WuHaobo 已提交
162 163 164


- HRNet系列
165
  - HRNet系列<sup>[[13](#ref13)]</sup>([论文地址](https://arxiv.org/abs/1908.07919))
L
littletomatodonkey 已提交
166 167 168 169 170 171 172 173 174
    - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams)
    - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams)
    - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams)
    - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams)
    - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams)
    - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams)
    - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams)
    - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams)
    - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams)
175
    - [SE_HRNet_W64_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams)
W
WuHaobo 已提交
176 177

- DPN与DenseNet系列
178
  - DPN系列<sup>[[14](#ref14)]</sup>([论文地址](https://arxiv.org/abs/1707.01629))
L
littletomatodonkey 已提交
179 180 181 182 183
    - [DPN68](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams)
    - [DPN92](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams)
    - [DPN98](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams)
    - [DPN107](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams)
    - [DPN131](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams)
184
  - DenseNet系列<sup>[[15](#ref15)]</sup>([论文地址](https://arxiv.org/abs/1608.06993))
L
littletomatodonkey 已提交
185 186 187 188 189
    - [DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams)
    - [DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams)
    - [DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams)
    - [DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams)
    - [DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams)
W
WuHaobo 已提交
190 191 192


- EfficientNet与ResNeXt101_wsl系列
193
  - EfficientNet系列<sup>[[16](#ref16)]</sup>([论文地址](https://arxiv.org/abs/1905.11946))
L
littletomatodonkey 已提交
194 195 196 197 198 199 200 201 202
    - [EfficientNetB0_small](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams)
    - [EfficientNetB0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams)
    - [EfficientNetB1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams)
    - [EfficientNetB2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams)
    - [EfficientNetB3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams)
    - [EfficientNetB4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams)
    - [EfficientNetB5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams)
    - [EfficientNetB6](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams)
    - [EfficientNetB7](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams)
203
  - ResNeXt101_wsl系列<sup>[[17](#ref17)]</sup>([论文地址](https://arxiv.org/abs/1805.00932))
L
littletomatodonkey 已提交
204 205 206 207 208
    - [ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams)
    - [ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams)
    - [ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams)
    - [ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams)
    - [Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams)
W
WuHaobo 已提交
209

210 211
- ResNeSt与RegNet系列
  - ResNeSt系列<sup>[[24](#ref24)]</sup>([论文地址](https://arxiv.org/abs/2004.08955))
L
littletomatodonkey 已提交
212 213
    - [ResNeSt50_fast_1s1x64d](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams)
    - [ResNeSt50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams)
214
  - RegNet系列<sup>[[25](#ref25)]</sup>([paper link](https://arxiv.org/abs/2003.13678))
L
littletomatodonkey 已提交
215
    - [RegNetX_4GF](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams)
216

littletomatodonkey's avatar
littletomatodonkey 已提交
217 218 219 220 221 222 223 224 225 226 227 228
- Transformer系列
  - Swin-transformer系列<sup>[[27](#ref27)]</sup>([论文地址](https://arxiv.org/pdf/2103.14030.pdf))
    - [SwinTransformer_tiny_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams)
    - [SwinTransformer_small_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams)
    - [SwinTransformer_base_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams)
    - [SwinTransformer_base_patch4_window12_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams)
    - [SwinTransformer_base_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k_pretrained.pdparams)
    - [SwinTransformer_base_patch4_window7_224_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams)
    - [SwinTransformer_large_patch4_window12_384_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k_pretrained.pdparams)
    - [SwinTransformer_large_patch4_window12_384_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams)
    - [SwinTransformer_large_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k_pretrained.pdparams)
    - [SwinTransformer_large_patch4_window7_224_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams)
C
cuicheng01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  - ViT系列<sup>[[31](#ref31)]</sup>([论文地址](https://arxiv.org/pdf/2010.11929.pdf))
      - [ViT_small_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams)
      - [ViT_base_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams)
      - [ViT_base_patch16_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams)
      - [ViT_base_patch32_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams)
      - [ViT_large_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams)
      - [ViT_large_patch16_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams)
      - [ViT_large_patch32_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams)
  - DeiT系列<sup>[[32](#ref32)]</sup>([论文地址](https://arxiv.org/pdf/2012.12877.pdf))
      - [DeiT_tiny_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams)
      - [DeiT_small_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams)
      - [DeiT_base_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams)
      - [DeiT_base_patch16_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams)
      - [DeiT_tiny_distilled_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams)
      - [DeiT_small_distilled_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams)
      - [DeiT_base_distilled_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams)
      - [DeiT_base_distilled_patch16_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams)
  - LeViT系列<sup>[[33](#ref33)]</sup>([论文地址](https://arxiv.org/pdf/2104.01136.pdf))
      - [LeViT_128S](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams)
      - [LeViT_128](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams)
      - [LeViT_192](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams)
      - [LeViT_256](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams)
      - [LeViT_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams)
  - Twins系列<sup>[[34](#ref43)]</sup>([论文地址](https://arxiv.org/pdf/2104.13840.pdf))
      - [pcpvt_small](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams)
      - [pcpvt_base](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams)
      - [pcpvt_large](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams)
      - [alt_gvt_small](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams)
      - [alt_gvt_base](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams)
      - [alt_gvt_large](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams)
  - TNT系列<sup>[[35](#ref35)]</sup>([论文地址](https://arxiv.org/pdf/2103.00112.pdf))
      - [TNT_small](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams)
W
WuHaobo 已提交
261 262

- 其他模型
263
  - AlexNet系列<sup>[[18](#ref18)]</sup>([论文地址](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf))
L
littletomatodonkey 已提交
264
    - [AlexNet](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams)
265
  - SqueezeNet系列<sup>[[19](#ref19)]</sup>([论文地址](https://arxiv.org/abs/1602.07360))
L
littletomatodonkey 已提交
266 267
    - [SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams)
    - [SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams)
268
  - VGG系列<sup>[[20](#ref20)]</sup>([论文地址](https://arxiv.org/abs/1409.1556))
L
littletomatodonkey 已提交
269 270 271 272
    - [VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams)
    - [VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams)
    - [VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams)
    - [VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams)
273
  - DarkNet系列<sup>[[21](#ref21)]</sup>([论文地址](https://arxiv.org/abs/1506.02640))
L
littletomatodonkey 已提交
274
    - [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams)
C
cuicheng01 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  - RepVGG系列<sup>[[36](#ref36)]</sup>([论文地址](https://arxiv.org/pdf/2101.03697.pdf))
      - [RepVGG_A0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams)
      - [RepVGG_A1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams)
      - [RepVGG_A2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams)
      - [RepVGG_B0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams)
      - [RepVGG_B1s](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams)
      - [RepVGG_B2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams)
      - [RepVGG_B1g2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams)
      - [RepVGG_B1g4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams)
      - [RepVGG_B2g4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams)
      - [RepVGG_B3g4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams)
   - HarDNet系列<sup>[[37](#ref37)]</sup>([论文地址](https://arxiv.org/pdf/1909.00948.pdf))
      - [HarDNet39_ds](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams)
      - [HarDNet68_ds](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams)
      - [HarDNet68](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams)
      - [HarDNet85](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams)
   - DLA系列<sup>[[38](#ref38)]</sup>([论文地址](https://arxiv.org/pdf/1707.06484.pdf))
      - [DLA102](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams)
      - [DLA102x2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams)
      - [DLA102x](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams)
      - [DLA169](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams)
      - [DLA34](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams)
      - [DLA46_c](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams)
      - [DLA60](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams)
      - [DLA60x_c](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams)
      - [DLA60x](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams)
   - RedNet系列<sup>[[39](#ref39)]</sup>([论文地址](https://arxiv.org/pdf/2103.06255.pdf))
      - [RedNet26](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams)
      - [RedNet38](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams)
      - [RedNet50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams)
      - [RedNet101](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams)
      - [RedNet152](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams)
G
gaotingquan 已提交
307 308


W
WuHaobo 已提交
309

L
littletomatodonkey 已提交
310
**注意**:以上模型中EfficientNetB1-B7的预训练模型转自[pytorch版EfficientNet](https://github.com/lukemelas/EfficientNet-PyTorch),ResNeXt101_wsl系列预训练模型转自[官方repo](https://github.com/facebookresearch/WSL-Images),剩余预训练模型均基于飞桨训练得到的,并在configs里给出了相应的训练超参数。
W
WuHaobo 已提交
311 312 313 314

## 参考文献


315
<a name="ref1">[1]</a> He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
W
WuHaobo 已提交
316

317
<a name="ref2">[2]</a> He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 558-567.
W
WuHaobo 已提交
318

319
<a name="ref3">[3]</a> Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1314-1324.
W
WuHaobo 已提交
320

321
<a name="ref4">[4]</a> Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
W
WuHaobo 已提交
322

323
<a name="ref5">[5]</a> Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
W
WuHaobo 已提交
324

325
<a name="ref6">[6]</a> Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
W
WuHaobo 已提交
326

327
<a name="ref7">[7]</a> Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
W
WuHaobo 已提交
328 329


330
<a name="ref8">[8]</a> Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
W
WuHaobo 已提交
331 332


333
<a name="ref9">[9]</a> Gao S, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2019.
W
WuHaobo 已提交
334

335
<a name="ref10">[10]</a> Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
W
WuHaobo 已提交
336 337


338
<a name="ref11">[11]</a> Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI conference on artificial intelligence. 2017.
W
WuHaobo 已提交
339

340
<a name="ref12">[12]</a> Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.
W
WuHaobo 已提交
341

342
<a name="ref13">[13]</a> Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition[J]. arXiv preprint arXiv:1908.07919, 2019.
W
WuHaobo 已提交
343

344
<a name="ref14">[14]</a> Chen Y, Li J, Xiao H, et al. Dual path networks[C]//Advances in neural information processing systems. 2017: 4467-4475.
W
WuHaobo 已提交
345

346
<a name="ref15">[15]</a> Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
W
WuHaobo 已提交
347 348


349
<a name="ref16">[16]</a> Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019.
W
WuHaobo 已提交
350

351
<a name="ref17">[17]</a> Mahajan D, Girshick R, Ramanathan V, et al. Exploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 181-196.
W
WuHaobo 已提交
352

353
<a name="ref18">[18]</a> Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
W
WuHaobo 已提交
354

355
<a name="ref19">[19]</a> Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.
W
WuHaobo 已提交
356

357
<a name="ref20">[20]</a> Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
W
WuHaobo 已提交
358

359 360 361
<a name="ref21">[21]</a> Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.

<a name="ref22">[22]</a> Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.
362 363 364 365 366 367

<a name="ref23">[23]</a> Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.

<a name="ref24">[24]</a> Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.

<a name="ref25">[25]</a> Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10428-10436.
368 369

<a name="ref26">[26]</a> C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.
littletomatodonkey's avatar
littletomatodonkey 已提交
370 371

<a name="ref27">[27]</a> Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.
C
cuicheng01 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

<a name="ref28">[28]</a>Cheng Cui, Tingquan Gao, Shengyu Wei, Yuning Du, Ruoyu Guo, Shuilong Dong, Bin Lu, Ying Zhou, Xueying Lv, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LCNet: A Lightweight CPU Convolutional Neural Network.

<a name="ref29">[29]</a>Mingxing Tan, Quoc V. Le. MixConv: Mixed Depthwise Convolutional Kernels.

<a name="ref30">[30]</a>Dongyoon Han, Sangdoo Yun, Byeongho Heo, YoungJoon Yoo. Rethinking Channel Dimensions for Efficient Model Design.

<a name="ref31">[31]</a>Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE.

<a name="ref32">[32]</a>Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Herve Jegou. Training data-efficient image transformers & distillation through attention.

<a name="ref33">[33]</a>Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herve Jegou, Matthijs Douze. LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference.

<a name="ref34">[34]</a>Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, Chunhua Shen. Twins: Revisiting the Design of Spatial Attention in Vision Transformers.

<a name="ref35">[35]</a>Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. Transformer in Transformer.

<a name="ref36">[36]</a>Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, Jian Sun. RepVGG: Making VGG-style ConvNets Great Again.

<a name="ref37">[37]</a>Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, Youn-Long Lin. HarDNet: A Low Memory Traffic Network.

<a name="ref38">[38]</a>Fisher Yu, Dequan Wang, Evan Shelhamer, Trevor Darrell. Deep Layer Aggregation.

G
gaotingquan 已提交
396
<a name="ref39">[39]</a>Duo Lim Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, Qifeng Chen. Involution: Inverting the Inherence of Convolution for Visual Recognition.