afdloss.py 4.2 KB
Newer Older
wc晨曦's avatar
wc晨曦 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle.nn as nn
import paddle.nn.functional as F
import paddle
import numpy as np
import matplotlib.pyplot as plt
import cv2
import warnings
warnings.filterwarnings('ignore')


class LinearBNReLU(nn.Layer):
    def __init__(self, nin, nout):
        super().__init__()
        self.linear = nn.Linear(nin, nout)
        self.bn = nn.BatchNorm1D(nout)
        self.relu = nn.ReLU()

    def forward(self, x, relu=True):
        if relu:
            return self.relu(self.bn(self.linear(x)))
        return self.bn(self.linear(x))


def unique_shape(s_shapes):
    n_s = []
    unique_shapes = []
    n = -1
    for s_shape in s_shapes:
        if s_shape not in unique_shapes:
            unique_shapes.append(s_shape)
            n += 1
        n_s.append(n)
    return n_s, unique_shapes


class AFDLoss(nn.Layer):
    """
    AFDLoss
    https://www.aaai.org/AAAI21Papers/AAAI-9785.JiM.pdf
    https://github.com/clovaai/attention-feature-distillation
    """

    def __init__(self,
                 model_name_pair=["Student", "Teacher"],
                 student_keys=["bilinear_key", "value"],
                 teacher_keys=["query", "value"],
                 s_shapes=[[64, 16, 160], [128, 8, 160], [256, 4, 160],
                           [512, 2, 160]],
                 t_shapes=[[640, 48], [320, 96], [160, 192]],
                 qk_dim=128,
                 name="loss_afd"):
        super().__init__()
        assert isinstance(model_name_pair, list)
        self.model_name_pair = model_name_pair
        self.student_keys = student_keys
        self.teacher_keys = teacher_keys
        self.s_shapes = [[1] + s_i for s_i in s_shapes]
        self.t_shapes = [[1] + t_i for t_i in t_shapes]
        self.qk_dim = qk_dim
        self.n_t, self.unique_t_shapes = unique_shape(self.t_shapes)
        self.attention = Attention(self.qk_dim, self.t_shapes, self.s_shapes,
                                   self.n_t, self.unique_t_shapes)
        self.name = name

    def forward(self, predicts, batch):
        s_features_dict = predicts[self.model_name_pair[0]]
        t_features_dict = predicts[self.model_name_pair[1]]

        g_s = [s_features_dict[key] for key in self.student_keys]
        g_t = [t_features_dict[key] for key in self.teacher_keys]

        loss = self.attention(g_s, g_t)
        sum_loss = sum(loss)

        loss_dict = dict()
        loss_dict[self.name] = sum_loss

        return loss_dict


class Attention(nn.Layer):
    def __init__(self, qk_dim, t_shapes, s_shapes, n_t, unique_t_shapes):
        super().__init__()
        self.qk_dim = qk_dim
        self.n_t = n_t

        self.p_t = self.create_parameter(
            shape=[len(t_shapes), qk_dim],
            default_initializer=nn.initializer.XavierNormal())
        self.p_s = self.create_parameter(
            shape=[len(s_shapes), qk_dim],
            default_initializer=nn.initializer.XavierNormal())

    def forward(self, g_s, g_t):
        bilinear_key, h_hat_s_all = g_s
        query, h_t_all = g_t

        p_logit = paddle.matmul(self.p_t, self.p_s.t())

        logit = paddle.add(
            paddle.einsum('bstq,btq->bts', bilinear_key, query),
            p_logit) / np.sqrt(self.qk_dim)
        atts = F.softmax(logit, axis=2)  # b x t x s

        loss = []

        for i, (n, h_t) in enumerate(zip(self.n_t, h_t_all)):
            h_hat_s = h_hat_s_all[n]
            diff = self.cal_diff(h_hat_s, h_t, atts[:, i])
            loss.append(diff)
        return loss

    def cal_diff(self, v_s, v_t, att):
        diff = (v_s - v_t.unsqueeze(1)).pow(2).mean(2)
        diff = paddle.multiply(diff, att).sum(1).mean()
        return diff