train.py 7.3 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))

import paddle
from paddle.distributed import fleet
from visualdl import LogWriter

from ppcls.data import build_dataloader
from ppcls.utils.config import get_config, print_config
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.static.save_load import init_model, save_model
from ppcls.static import program


def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
        default='configs/ResNet/ResNet50.yaml',
        help='config file path')
46 47 48 49 50 51 52
    parser.add_argument(
        '-p',
        '--profiler_options',
        type=str,
        default=None,
        help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
    )
littletomatodonkey's avatar
littletomatodonkey 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    """
    all the config of training paradigm should be in config["Global"]
    """
    config = get_config(args.config, overrides=args.override, show=False)
    global_config = config["Global"]

    mode = "train"

    log_file = os.path.join(global_config['output_dir'],
                            config["Arch"]["name"], f"{mode}.log")
    init_logger(name='root', log_file=log_file)
    print_config(config)

    if global_config.get("is_distributed", True):
        fleet.init(is_collective=True)
    # assign the device
    use_gpu = global_config.get("use_gpu", True)
    # amp related config
    if 'AMP' in config:
        AMP_RELATED_FLAGS_SETTING = {
W
Wei Shengyu 已提交
84 85 86 87
            'FLAGS_cudnn_exhaustive_search': 1,
            'FLAGS_conv_workspace_size_limit': 1500,
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
littletomatodonkey's avatar
littletomatodonkey 已提交
88
        }
W
Wei Shengyu 已提交
89 90
        os.environ['FLAGS_cudnn_batchnorm_spatial_persistent'] = '1'
        paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
littletomatodonkey's avatar
littletomatodonkey 已提交
91 92

    use_xpu = global_config.get("use_xpu", False)
R
ronnywang 已提交
93
    use_npu = global_config.get("use_npu", False)
littletomatodonkey's avatar
littletomatodonkey 已提交
94
    assert (
R
ronnywang 已提交
95 96
        use_gpu and use_xpu and use_npu
    ) is not True, "gpu, xpu and npu can not be true in the same time in static mode!"
littletomatodonkey's avatar
littletomatodonkey 已提交
97 98 99 100 101

    if use_gpu:
        device = paddle.set_device('gpu')
    elif use_xpu:
        device = paddle.set_device('xpu')
R
ronnywang 已提交
102 103
    elif use_npu:
        device = paddle.set_device('npu')
littletomatodonkey's avatar
littletomatodonkey 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116
    else:
        device = paddle.set_device('cpu')

    # visualDL
    vdl_writer = None
    if global_config["use_visualdl"]:
        vdl_dir = os.path.join(global_config["output_dir"], "vdl")
        vdl_writer = LogWriter(vdl_dir)

    # build dataloader
    eval_dataloader = None
    use_dali = global_config.get('use_dali', False)

117 118
    class_num = config["Arch"].get("class_num", None)
    config["DataLoader"].update({"class_num": class_num})
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    train_dataloader = build_dataloader(
        config["DataLoader"], "Train", device=device, use_dali=use_dali)
    if global_config["eval_during_train"]:
        eval_dataloader = build_dataloader(
            config["DataLoader"], "Eval", device=device, use_dali=use_dali)

    step_each_epoch = len(train_dataloader)

    # startup_prog is used to do some parameter init work,
    # and train prog is used to hold the network
    startup_prog = paddle.static.Program()
    train_prog = paddle.static.Program()

    best_top1_acc = 0.0  # best top1 acc record

    train_fetchs, lr_scheduler, train_feeds, optimizer = program.build(
        config,
        train_prog,
        startup_prog,
138
        class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        step_each_epoch=step_each_epoch,
        is_train=True,
        is_distributed=global_config.get("is_distributed", True))

    if global_config["eval_during_train"]:
        eval_prog = paddle.static.Program()
        eval_fetchs, _, eval_feeds, _ = program.build(
            config,
            eval_prog,
            startup_prog,
            is_train=False,
            is_distributed=global_config.get("is_distributed", True))
        # clone to prune some content which is irrelevant in eval_prog
        eval_prog = eval_prog.clone(for_test=True)

    # create the "Executor" with the statement of which device
    exe = paddle.static.Executor(device)
    # Parameter initialization
    exe.run(startup_prog)
    # load pretrained models or checkpoints
    init_model(global_config, train_prog, exe)

161
    if 'AMP' in config and config.AMP.get("level", "O1") == "O2":
littletomatodonkey's avatar
littletomatodonkey 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        optimizer.amp_init(
            device,
            scope=paddle.static.global_scope(),
            test_program=eval_prog
            if global_config["eval_during_train"] else None)

    if not global_config.get("is_distributed", True):
        compiled_train_prog = program.compile(
            config, train_prog, loss_name=train_fetchs["loss"][0].name)
    else:
        compiled_train_prog = train_prog

    if eval_dataloader is not None:
        compiled_eval_prog = program.compile(config, eval_prog)

    for epoch_id in range(global_config["epochs"]):
        # 1. train with train dataset
        program.run(train_dataloader, exe, compiled_train_prog, train_feeds,
                    train_fetchs, epoch_id, 'train', config, vdl_writer,
181
                    lr_scheduler, args.profiler_options)
littletomatodonkey's avatar
littletomatodonkey 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        # 2. evaate with eval dataset
        if global_config["eval_during_train"] and epoch_id % global_config[
                "eval_interval"] == 0:
            top1_acc = program.run(eval_dataloader, exe, compiled_eval_prog,
                                   eval_feeds, eval_fetchs, epoch_id, "eval",
                                   config)
            if top1_acc > best_top1_acc:
                best_top1_acc = top1_acc
                message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
                    best_top1_acc, epoch_id)
                logger.info(message)
                if epoch_id % global_config["save_interval"] == 0:

                    model_path = os.path.join(global_config["output_dir"],
                                              config["Arch"]["name"])
                    save_model(train_prog, model_path, "best_model")

        # 3. save the persistable model
        if epoch_id % global_config["save_interval"] == 0:
            model_path = os.path.join(global_config["output_dir"],
                                      config["Arch"]["name"])
            save_model(train_prog, model_path, epoch_id)


if __name__ == '__main__':
    paddle.enable_static()
    args = parse_args()
    main(args)