dpn.py 13.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/abs/1707.01629

littletomatodonkey's avatar
littletomatodonkey 已提交
17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
21
import numpy as np
littletomatodonkey's avatar
littletomatodonkey 已提交
22
import sys
23
import paddle
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
24 25
from paddle import ParamAttr
import paddle.nn as nn
26 27
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
28
from paddle.nn.initializer import Uniform
29 30 31

import math

R
root 已提交
32
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
33

littletomatodonkey's avatar
littletomatodonkey 已提交
34 35 36 37 38 39 40 41 42 43 44 45
MODEL_URLS = {
    "DPN68":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams",
    "DPN92":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams",
    "DPN98":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams",
    "DPN107":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams",
    "DPN131":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams",
}
C
cuicheng01 已提交
46 47

__all__ = list(MODEL_URLS.keys())
48 49


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
50
class ConvBNLayer(nn.Layer):
51 52 53 54 55 56 57 58 59 60 61
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

62
        self._conv = Conv2D(
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
63 64 65
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
66 67 68
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
69
            weight_attr=ParamAttr(name=name + "_weights"),
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
85
class BNACConvLayer(nn.Layer):
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()
        self.num_channels = num_channels

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

106
        self._conv = Conv2D(
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
107 108 109
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
110 111 112
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
113
            weight_attr=ParamAttr(name=name + "_weights"),
114 115 116 117 118 119 120 121
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
122
class DualPathFactory(nn.Layer):
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def __init__(self,
                 num_channels,
                 num_1x1_a,
                 num_3x3_b,
                 num_1x1_c,
                 inc,
                 G,
                 _type='normal',
                 name=None):
        super(DualPathFactory, self).__init__()

        self.num_1x1_c = num_1x1_c
        self.inc = inc
        self.name = name

        kw = 3
        kh = 3
        pw = (kw - 1) // 2
        ph = (kh - 1) // 2

        # type
        if _type == 'proj':
            key_stride = 1
            self.has_proj = True
        elif _type == 'down':
            key_stride = 2
            self.has_proj = True
        elif _type == 'normal':
            key_stride = 1
            self.has_proj = False
        else:
            print("not implemented now!!!")
            sys.exit(1)
W
WuHaobo 已提交
156

157 158
        data_in_ch = sum(num_channels) if isinstance(num_channels,
                                                     list) else num_channels
W
WuHaobo 已提交
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        if self.has_proj:
            self.c1x1_w_func = BNACConvLayer(
                num_channels=data_in_ch,
                num_filters=num_1x1_c + 2 * inc,
                filter_size=(1, 1),
                pad=(0, 0),
                stride=(key_stride, key_stride),
                name=name + "_match")

        self.c1x1_a_func = BNACConvLayer(
            num_channels=data_in_ch,
            num_filters=num_1x1_a,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv1")

        self.c3x3_b_func = BNACConvLayer(
            num_channels=num_1x1_a,
            num_filters=num_3x3_b,
            filter_size=(kw, kh),
            pad=(pw, ph),
            stride=(key_stride, key_stride),
            groups=G,
            name=name + "_conv2")
W
WuHaobo 已提交
184

185 186 187 188 189 190 191 192 193 194
        self.c1x1_c_func = BNACConvLayer(
            num_channels=num_3x3_b,
            num_filters=num_1x1_c + inc,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv3")

    def forward(self, input):
        # PROJ
        if isinstance(input, list):
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
195
            data_in = paddle.concat([input[0], input[1]], axis=1)
196 197 198 199 200
        else:
            data_in = input

        if self.has_proj:
            c1x1_w = self.c1x1_w_func(data_in)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
201 202
            data_o1, data_o2 = paddle.split(
                c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], axis=1)
203 204 205 206 207 208 209 210
        else:
            data_o1 = input[0]
            data_o2 = input[1]

        c1x1_a = self.c1x1_a_func(data_in)
        c3x3_b = self.c3x3_b_func(c1x1_a)
        c1x1_c = self.c1x1_c_func(c3x3_b)

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
211 212
        c1x1_c1, c1x1_c2 = paddle.split(
            c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], axis=1)
213 214

        # OUTPUTS
215
        summ = paddle.add(x=data_o1, y=c1x1_c1)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
216
        dense = paddle.concat([data_o2, c1x1_c2], axis=1)
217 218
        # tensor, channels
        return [summ, dense]
W
WuHaobo 已提交
219

220

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
221
class DPN(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
222
    def __init__(self, layers=68, class_num=1000):
223 224
        super(DPN, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
225
        self._class_num = class_num
226 227

        args = self.get_net_args(layers)
W
WuHaobo 已提交
228 229 230 231 232 233 234 235 236 237
        bws = args['bw']
        inc_sec = args['inc_sec']
        rs = args['r']
        k_r = args['k_r']
        k_sec = args['k_sec']
        G = args['G']
        init_num_filter = args['init_num_filter']
        init_filter_size = args['init_filter_size']
        init_padding = args['init_padding']

238
        self.k_sec = k_sec
W
WuHaobo 已提交
239

240 241
        self.conv1_x_1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
242
            num_filters=init_num_filter,
L
littletomatodonkey 已提交
243
            filter_size=init_filter_size,
W
WuHaobo 已提交
244
            stride=2,
L
littletomatodonkey 已提交
245
            pad=init_padding,
W
WuHaobo 已提交
246
            act='relu',
247 248
            name="conv1")

249
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
250

251 252 253
        num_channel_dpn = init_num_filter

        self.dpn_func_list = []
W
WuHaobo 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        #conv2 - conv5
        match_list, num = [], 0
        for gc in range(4):
            bw = bws[gc]
            inc = inc_sec[gc]
            R = (k_r * bw) // rs[gc]
            if gc == 0:
                _type1 = 'proj'
                _type2 = 'normal'
                match = 1
            else:
                _type1 = 'down'
                _type2 = 'normal'
                match = match + k_sec[gc - 1]
            match_list.append(match)
269 270 271 272 273 274 275 276 277 278 279 280 281
            self.dpn_func_list.append(
                self.add_sublayer(
                    "dpn{}".format(match),
                    DualPathFactory(
                        num_channels=num_channel_dpn,
                        num_1x1_a=R,
                        num_3x3_b=R,
                        num_1x1_c=bw,
                        inc=inc,
                        G=G,
                        _type=_type1,
                        name="dpn" + str(match))))
            num_channel_dpn = [bw, 3 * inc]
W
WuHaobo 已提交
282 283 284 285 286

            for i_ly in range(2, k_sec[gc] + 1):
                num += 1
                if num in match_list:
                    num += 1
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
                self.dpn_func_list.append(
                    self.add_sublayer(
                        "dpn{}".format(num),
                        DualPathFactory(
                            num_channels=num_channel_dpn,
                            num_1x1_a=R,
                            num_3x3_b=R,
                            num_1x1_c=bw,
                            inc=inc,
                            G=G,
                            _type=_type2,
                            name="dpn" + str(num))))

                num_channel_dpn = [
                    num_channel_dpn[0], num_channel_dpn[1] + inc
                ]

        out_channel = sum(num_channel_dpn)

        self.conv5_x_x_bn = BatchNorm(
            num_channels=sum(num_channel_dpn),
            act="relu",
W
WuHaobo 已提交
309 310 311
            param_attr=ParamAttr(name='final_concat_bn_scale'),
            bias_attr=ParamAttr('final_concat_bn_offset'),
            moving_mean_name='final_concat_bn_mean',
312 313
            moving_variance_name='final_concat_bn_variance')

314
        self.pool2d_avg = AdaptiveAvgPool2D(1)
W
WuHaobo 已提交
315 316

        stdv = 0.01
317 318 319

        self.out = Linear(
            out_channel,
littletomatodonkey's avatar
littletomatodonkey 已提交
320
            class_num,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
321 322
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
323
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
324

325 326 327 328 329 330 331 332 333 334 335 336
    def forward(self, input):
        conv1_x_1 = self.conv1_x_1_func(input)
        convX_x_x = self.pool2d_max(conv1_x_1)

        dpn_idx = 0
        for gc in range(4):
            convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
            dpn_idx += 1
            for i_ly in range(2, self.k_sec[gc] + 1):
                convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
                dpn_idx += 1

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
337
        conv5_x_x = paddle.concat(convX_x_x, axis=1)
338 339 340
        conv5_x_x = self.conv5_x_x_bn(conv5_x_x)

        y = self.pool2d_avg(conv5_x_x)
L
littletomatodonkey 已提交
341
        y = paddle.flatten(y, start_axis=1, stop_axis=-1)
342 343
        y = self.out(y)
        return y
W
WuHaobo 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

    def get_net_args(self, layers):
        if layers == 68:
            k_r = 128
            G = 32
            k_sec = [3, 4, 12, 3]
            inc_sec = [16, 32, 32, 64]
            bw = [64, 128, 256, 512]
            r = [64, 64, 64, 64]
            init_num_filter = 10
            init_filter_size = 3
            init_padding = 1
        elif layers == 92:
            k_r = 96
            G = 32
            k_sec = [3, 4, 20, 3]
            inc_sec = [16, 32, 24, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 64
            init_filter_size = 7
            init_padding = 3
        elif layers == 98:
            k_r = 160
            G = 40
            k_sec = [3, 6, 20, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 96
            init_filter_size = 7
            init_padding = 3
        elif layers == 107:
            k_r = 200
            G = 50
            k_sec = [4, 8, 20, 3]
            inc_sec = [20, 64, 64, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        elif layers == 131:
            k_r = 160
            G = 40
            k_sec = [4, 8, 28, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        else:
            raise NotImplementedError
        net_arg = {
            'k_r': k_r,
            'G': G,
            'k_sec': k_sec,
            'inc_sec': inc_sec,
            'bw': bw,
            'r': r
        }
        net_arg['init_num_filter'] = init_num_filter
        net_arg['init_filter_size'] = init_filter_size
        net_arg['init_padding'] = init_padding

        return net_arg
littletomatodonkey's avatar
littletomatodonkey 已提交
411 412


C
cuicheng01 已提交
413 414 415 416 417 418 419 420 421 422
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
littletomatodonkey's avatar
littletomatodonkey 已提交
423
        )
C
cuicheng01 已提交
424 425 426 427 428


def DPN68(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=68, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN68"])
W
WuHaobo 已提交
429 430 431
    return model


C
cuicheng01 已提交
432 433 434
def DPN92(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=92, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN92"])
W
WuHaobo 已提交
435 436 437
    return model


C
cuicheng01 已提交
438 439 440
def DPN98(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=98, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN98"])
W
WuHaobo 已提交
441 442 443
    return model


C
cuicheng01 已提交
444 445 446
def DPN107(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=107, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN107"])
W
WuHaobo 已提交
447 448 449
    return model


C
cuicheng01 已提交
450 451 452
def DPN131(pretrained=False, use_ssld=False, **kwargs):
    model = DPN(layers=131, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DPN131"])
littletomatodonkey's avatar
littletomatodonkey 已提交
453
    return model