hardnet.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
import paddle
import paddle.nn as nn

from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url


MODEL_URLS = {
    'HarDNet39_ds':
    'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet39_ds_pretrained.pdparams',
    'HarDNet68_ds':
    'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet68_ds_pretrained.pdparams',
    'HarDNet68':
    'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet68_pretrained.pdparams',
    'HarDNet85':
    'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet85_pretrained.pdparams'
}


jm_12138's avatar
jm_12138 已提交
19 20 21
__all__ = MODEL_URLS.keys()


22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
def ConvLayer(in_channels, out_channels, kernel_size=3, stride=1, bias_attr=False):
    layer = nn.Sequential(
        ('conv', nn.Conv2D(
            in_channels, out_channels, kernel_size=kernel_size,
            stride=stride, padding=kernel_size//2, groups=1, bias_attr=bias_attr
        )),
        ('norm', nn.BatchNorm2D(out_channels)),
        ('relu', nn.ReLU6())
    )
    return layer


def DWConvLayer(in_channels, out_channels, kernel_size=3, stride=1, bias_attr=False):
    layer = nn.Sequential(
        ('dwconv', nn.Conv2D(
            in_channels, out_channels, kernel_size=kernel_size,
            stride=stride, padding=1, groups=out_channels, bias_attr=bias_attr
        )),
        ('norm', nn.BatchNorm2D(out_channels))
    )
    return layer


def CombConvLayer(in_channels, out_channels, kernel_size=1, stride=1):
    layer = nn.Sequential(
        ('layer1', ConvLayer(in_channels, out_channels, kernel_size=kernel_size)),
        ('layer2', DWConvLayer(out_channels, out_channels, stride=stride))
    )
    return layer


class HarDBlock(nn.Layer):
    def __init__(self, in_channels, growth_rate, grmul, n_layers, 
                 keepBase=False, residual_out=False, dwconv=False):
        super().__init__()
        self.keepBase = keepBase
        self.links = []
        layers_ = []
        self.out_channels = 0  # if upsample else in_channels
        for i in range(n_layers):
            outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
            self.links.append(link)
            if dwconv:
                layers_.append(CombConvLayer(inch, outch))
            else:
                layers_.append(ConvLayer(inch, outch))

            if (i % 2 == 0) or (i == n_layers - 1):
                self.out_channels += outch
        # print("Blk out =",self.out_channels)
        self.layers = nn.LayerList(layers_)

    def get_link(self, layer, base_ch, growth_rate, grmul):
        if layer == 0:
            return base_ch, 0, []
        out_channels = growth_rate

        link = []
        for i in range(10):
            dv = 2 ** i
            if layer % dv == 0:
                k = layer - dv
                link.append(k)
                if i > 0:
                    out_channels *= grmul

        out_channels = int(int(out_channels + 1) / 2) * 2
        in_channels = 0

        for i in link:
            ch, _, _ = self.get_link(i, base_ch, growth_rate, grmul)
            in_channels += ch

        return out_channels, in_channels, link

    def forward(self, x):
        layers_ = [x]

        for layer in range(len(self.layers)):
            link = self.links[layer]
            tin = []
            for i in link:
                tin.append(layers_[i])
            if len(tin) > 1:
                x = paddle.concat(tin, 1)
            else:
                x = tin[0]
            out = self.layers[layer](x)
            layers_.append(out)

        t = len(layers_)
        out_ = []
        for i in range(t):
            if (i == 0 and self.keepBase) or (i == t-1) or (i % 2 == 1):
                out_.append(layers_[i])
        out = paddle.concat(out_, 1)

        return out


class HarDNet(nn.Layer):
    def __init__(self, depth_wise=False, arch=85,
                 class_dim=1000, with_pool=True):
        super().__init__()
        first_ch = [32, 64]
        second_kernel = 3
        max_pool = True
        grmul = 1.7
        drop_rate = 0.1

        # HarDNet68
        ch_list = [128, 256, 320, 640, 1024]
        gr = [14, 16, 20, 40, 160]
        n_layers = [8, 16, 16, 16,  4]
        downSamp = [1,  0,  1,  1,  0]

        if arch == 85:
            # HarDNet85
            first_ch = [48, 96]
            ch_list = [192, 256, 320, 480, 720, 1280]
            gr = [24,  24,  28,  36,  48, 256]
            n_layers = [8,  16,  16,  16,  16,   4]
            downSamp = [1,   0,   1,   0,   1,   0]
            drop_rate = 0.2

        elif arch == 39:
            # HarDNet39
            first_ch = [24, 48]
            ch_list = [96, 320, 640, 1024]
            grmul = 1.6
            gr = [16,  20, 64, 160]
            n_layers = [4,  16,  8,   4]
            downSamp = [1,   1,  1,   0]

        if depth_wise:
            second_kernel = 1
            max_pool = False
            drop_rate = 0.05

        blks = len(n_layers)
        self.base = nn.LayerList([])

        # First Layer: Standard Conv3x3, Stride=2
        self.base.append(
            ConvLayer(in_channels=3, out_channels=first_ch[0], kernel_size=3,
                      stride=2, bias_attr=False))

        # Second Layer
        self.base.append(
            ConvLayer(first_ch[0], first_ch[1],  kernel_size=second_kernel))

        # Maxpooling or DWConv3x3 downsampling
        if max_pool:
            self.base.append(nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
        else:
            self.base.append(DWConvLayer(first_ch[1], first_ch[1], stride=2))

        # Build all HarDNet blocks
        ch = first_ch[1]
        for i in range(blks):
            blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise)
            ch = blk.out_channels
            self.base.append(blk)

            if i == blks-1 and arch == 85:
                self.base.append(nn.Dropout(0.1))

            self.base.append(ConvLayer(ch, ch_list[i], kernel_size=1))
            ch = ch_list[i]
            if downSamp[i] == 1:
                if max_pool:
                    self.base.append(nn.MaxPool2D(kernel_size=2, stride=2))
                else:
                    self.base.append(DWConvLayer(ch, ch, stride=2))

        ch = ch_list[blks-1]

        layers = []

        if with_pool:
            layers.append(nn.AdaptiveAvgPool2D((1, 1)))

        if class_dim > 0:
            layers.append(nn.Flatten())
            layers.append(nn.Dropout(drop_rate))
            layers.append(nn.Linear(ch, class_dim))

        self.base.append(nn.Sequential(*layers))

    def forward(self, x):
        for layer in self.base:
            x = layer(x)
        return x


def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def HarDNet39_ds(pretrained=False, **kwargs):
    model = HarDNet(arch=39, depth_wise=True, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["HarDNet39_ds"])
    return model


def HarDNet68_ds(pretrained=False, **kwargs):
    model = HarDNet(arch=68, depth_wise=True, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["HarDNet68_ds"])
    return model


def HarDNet68(pretrained=False, **kwargs):
    model = HarDNet(arch=68, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["HarDNet68"])
    return model


def HarDNet85(pretrained=False, **kwargs):
    model = HarDNet(arch=85, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["HarDNet85"])
    return model