swin_transformer.py 31.8 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
cuicheng01 已提交
14 15

# Code was based on https://github.com/microsoft/Swin-Transformer
G
gaotingquan 已提交
16
# reference: https://arxiv.org/abs/2103.14030
L
littletomatodonkey 已提交
17 18 19 20 21 22 23

import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import TruncatedNormal, Constant

littletomatodonkey's avatar
littletomatodonkey 已提交
24 25
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.arch.backbone.model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
C
cuicheng01 已提交
26 27 28
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
littletomatodonkey's avatar
littletomatodonkey 已提交
29 30 31 32 33 34 35 36 37
    "SwinTransformer_tiny_patch4_window7_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams",
    "SwinTransformer_small_patch4_window7_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams",
    "SwinTransformer_base_patch4_window7_224":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams",
    "SwinTransformer_base_patch4_window12_384":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams",
    "SwinTransformer_large_patch4_window7_224":
38
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams",
littletomatodonkey's avatar
littletomatodonkey 已提交
39
    "SwinTransformer_large_patch4_window12_384":
40
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams",
littletomatodonkey's avatar
littletomatodonkey 已提交
41
}
C
cuicheng01 已提交
42 43 44

__all__ = list(MODEL_URLS.keys())

L
littletomatodonkey 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.reshape(
        [B, H // window_size, window_size, W // window_size, window_size, C])
    windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape(
        [-1, window_size, window_size, C])
    return windows


87
def window_reverse(windows, window_size, H, W, C):
L
littletomatodonkey 已提交
88 89 90 91 92 93 94 95 96 97 98
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    x = windows.reshape(
99 100
        [-1, H // window_size, W // window_size, window_size, window_size, C])
    x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, H, W, C])
L
littletomatodonkey 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    return x


class WindowAttention(nn.Layer):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self,
                 dim,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.):
        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        # define a parameter table of relative position bias
        # 2*Wh-1 * 2*Ww-1, nH
        self.relative_position_bias_table = self.create_parameter(
            shape=((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                   num_heads),
            default_initializer=zeros_)
        self.add_parameter("relative_position_bias_table",
                           self.relative_position_bias_table)

        # get pair-wise relative position index for each token inside the window
        coords_h = paddle.arange(self.window_size[0])
        coords_w = paddle.arange(self.window_size[1])
        coords = paddle.stack(paddle.meshgrid(
            [coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = paddle.flatten(coords, 1)  # 2, Wh*Ww

        coords_flatten_1 = coords_flatten.unsqueeze(axis=2)
        coords_flatten_2 = coords_flatten.unsqueeze(axis=1)
        relative_coords = coords_flatten_1 - coords_flatten_2

        relative_coords = relative_coords.transpose(
            [1, 2, 0])  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[
            0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
littletomatodonkey's avatar
littletomatodonkey 已提交
160

L
littletomatodonkey 已提交
161 162 163 164 165 166 167 168 169 170 171
        self.register_buffer("relative_position_index",
                             relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table)
        self.softmax = nn.Softmax(axis=-1)

littletomatodonkey's avatar
littletomatodonkey 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def eval(self, ):
        # this is used to re-param swin for model export
        relative_position_bias_table = self.relative_position_bias_table
        window_size = self.window_size
        index = self.relative_position_index.reshape([-1])

        relative_position_bias = paddle.index_select(
            relative_position_bias_table, index)
        relative_position_bias = relative_position_bias.reshape([
            window_size[0] * window_size[1], window_size[0] * window_size[1],
            -1
        ])  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.transpose(
            [2, 0, 1])  # nH, Wh*Ww, Wh*Ww
        relative_position_bias = relative_position_bias.unsqueeze(0)
        self.register_buffer("relative_position_bias", relative_position_bias)

L
littletomatodonkey 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(
            [B_, N, 3, self.num_heads, C // self.num_heads]).transpose(
                [2, 0, 3, 1, 4])
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = paddle.mm(q, k.transpose([0, 1, 3, 2]))

littletomatodonkey's avatar
littletomatodonkey 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        if self.training or not hasattr(self, "relative_position_bias"):
            index = self.relative_position_index.reshape([-1])

            relative_position_bias = paddle.index_select(
                self.relative_position_bias_table, index)
            relative_position_bias = relative_position_bias.reshape([
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1], -1
            ])  # Wh*Ww,Wh*Ww,nH

            relative_position_bias = relative_position_bias.transpose(
                [2, 0, 1])  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)
        else:
            attn = attn + self.relative_position_bias
L
littletomatodonkey 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N
                                 ]) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.reshape([-1, self.num_heads, N, N])
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
        x = paddle.mm(attn, v).transpose([0, 2, 1, 3]).reshape([B_, N, C])
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self):
        return "dim={}, window_size={}, num_heads={}".format(
            self.dim, self.window_size, self.num_heads)

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class SwinTransformerBlock(nn.Layer):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Layer, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 num_heads,
                 window_size=7,
                 shift_size=0,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)

        if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = paddle.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            mask_windows = window_partition(
                img_mask, self.window_size)  # nW, window_size, window_size, 1
            mask_windows = mask_windows.reshape(
                [-1, self.window_size * self.window_size])
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)

            huns = -100.0 * paddle.ones_like(attn_mask)
            attn_mask = huns * (attn_mask != 0).astype("float32")
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.reshape([B, H, W, C])

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = paddle.roll(
                x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(
            shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.reshape(
            [-1, self.window_size * self.window_size,
             C])  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(
            x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.reshape(
            [-1, self.window_size, self.window_size, C])
378 379
        shifted_x = window_reverse(attn_windows, self.window_size, H, W,
                                   C)  # B H' W' C
L
littletomatodonkey 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

        # reverse cyclic shift
        if self.shift_size > 0:
            x = paddle.roll(
                shifted_x,
                shifts=(self.shift_size, self.shift_size),
                axis=(1, 2))
        else:
            x = shifted_x
        x = x.reshape([B, H * W, C])

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self):
        return "dim={}, input_resolution={}, num_heads={}, window_size={}, shift_size={}, mlp_ratio={}".format(
            self.dim, self.input_resolution, self.num_heads, self.window_size,
            self.shift_size, self.mlp_ratio)

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops


class PatchMerging(nn.Layer):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Layer, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, "x size ({}*{}) are not even.".format(
            H, W)

        x = x.reshape([B, H, W, C])

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = paddle.concat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
450
        x = x.reshape([B, H * W // 4, 4 * C])  # B H/2*W/2 4*C
L
littletomatodonkey 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self):
        return "input_resolution={}, dim={}".format(self.input_resolution,
                                                    self.dim)

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
        return flops


class BasicLayer(nn.Layer):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.LayerList([
            SwinTransformerBlock(
                dim=dim,
                input_resolution=input_resolution,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i]
                if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer) for i in range(depth)
        ])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(
                input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self):
        return "dim={}, input_resolution={}, depth={}".format(
            self.dim, self.input_resolution, self.depth)

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Layer, optional): Normalization layer. Default: None
    """

    def __init__(self,
                 img_size=224,
                 patch_size=4,
                 in_chans=3,
                 embed_dim=96,
                 norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [
            img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        ]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2D(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
595 596
        # TODO (littletomatodonkey), uncomment the line will cause failure of jit.save
        # assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1])
L
littletomatodonkey 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        x = self.proj(x)

        x = x.flatten(2).transpose([0, 2, 1])  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (
            self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


littletomatodonkey's avatar
littletomatodonkey 已提交
613
class SwinTransformer(TheseusLayer):
L
littletomatodonkey 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    """ Swin Transformer
        A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self,
                 img_size=224,
                 patch_size=4,
                 in_chans=3,
littletomatodonkey's avatar
littletomatodonkey 已提交
643
                 class_num=1000,
L
littletomatodonkey 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                 embed_dim=96,
                 depths=[2, 2, 6, 2],
                 num_heads=[3, 6, 12, 24],
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 use_checkpoint=False,
                 **kwargs):
        super(SwinTransformer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
661
        self.num_classes = num_classes = class_num
L
littletomatodonkey 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2**(self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = self.create_parameter(
                shape=(1, num_patches, embed_dim), default_initializer=zeros_)
            self.add_parameter("absolute_pos_embed", self.absolute_pos_embed)
            trunc_normal_(self.absolute_pos_embed)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = np.linspace(0, drop_path_rate,
                          sum(depths)).tolist()  # stochastic depth decay rule

        # build layers
        self.layers = nn.LayerList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2**i_layer),
                input_resolution=(patches_resolution[0] // (2**i_layer),
                                  patches_resolution[1] // (2**i_layer)),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging
                if (i_layer < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1D(1)
        self.head = nn.Linear(
            self.num_features,
            num_classes) if self.num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose([0, 2, 1]))  # B C 1
        x = paddle.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for _, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[
            0] * self.patches_resolution[1] // (2**self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

littletomatodonkey's avatar
littletomatodonkey 已提交
761

C
cuicheng01 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


littletomatodonkey's avatar
littletomatodonkey 已提交
775 776 777
def SwinTransformer_tiny_patch4_window7_224(pretrained=False,
                                            use_ssld=False,
                                            **kwargs):
L
littletomatodonkey 已提交
778 779 780 781 782 783
    model = SwinTransformer(
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        drop_path_rate=0.2,
C
cuicheng01 已提交
784
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
785 786 787 788 789
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["SwinTransformer_tiny_patch4_window7_224"],
        use_ssld=use_ssld)
L
littletomatodonkey 已提交
790 791 792
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
793 794 795
def SwinTransformer_small_patch4_window7_224(pretrained=False,
                                             use_ssld=False,
                                             **kwargs):
L
littletomatodonkey 已提交
796 797 798 799 800
    model = SwinTransformer(
        embed_dim=96,
        depths=[2, 2, 18, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
C
cuicheng01 已提交
801
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
802 803 804 805 806
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["SwinTransformer_small_patch4_window7_224"],
        use_ssld=use_ssld)
L
littletomatodonkey 已提交
807 808 809
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
810 811 812
def SwinTransformer_base_patch4_window7_224(pretrained=False,
                                            use_ssld=False,
                                            **kwargs):
L
littletomatodonkey 已提交
813 814 815 816 817 818
    model = SwinTransformer(
        embed_dim=128,
        depths=[2, 2, 18, 2],
        num_heads=[4, 8, 16, 32],
        window_size=7,
        drop_path_rate=0.5,
C
cuicheng01 已提交
819
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
820 821 822 823 824
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["SwinTransformer_base_patch4_window7_224"],
        use_ssld=use_ssld)
L
littletomatodonkey 已提交
825 826 827
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
828 829 830
def SwinTransformer_base_patch4_window12_384(pretrained=False,
                                             use_ssld=False,
                                             **kwargs):
L
littletomatodonkey 已提交
831 832 833 834 835 836 837
    model = SwinTransformer(
        img_size=384,
        embed_dim=128,
        depths=[2, 2, 18, 2],
        num_heads=[4, 8, 16, 32],
        window_size=12,
        drop_path_rate=0.5,  # NOTE: do not appear in offical code
C
cuicheng01 已提交
838
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
839 840 841 842 843
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["SwinTransformer_base_patch4_window12_384"],
        use_ssld=use_ssld)
L
littletomatodonkey 已提交
844
    return model
T
Tingquan Gao 已提交
845 846


littletomatodonkey's avatar
littletomatodonkey 已提交
847 848 849
def SwinTransformer_large_patch4_window7_224(pretrained=False,
                                             use_ssld=False,
                                             **kwargs):
T
Tingquan Gao 已提交
850 851 852 853 854
    model = SwinTransformer(
        embed_dim=192,
        depths=[2, 2, 18, 2],
        num_heads=[6, 12, 24, 48],
        window_size=7,
C
cuicheng01 已提交
855
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
856 857 858 859 860
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["SwinTransformer_large_patch4_window7_224"],
        use_ssld=use_ssld)
T
Tingquan Gao 已提交
861 862 863
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
864 865 866
def SwinTransformer_large_patch4_window12_384(pretrained=False,
                                              use_ssld=False,
                                              **kwargs):
T
Tingquan Gao 已提交
867 868 869 870 871 872
    model = SwinTransformer(
        img_size=384,
        embed_dim=192,
        depths=[2, 2, 18, 2],
        num_heads=[6, 12, 24, 48],
        window_size=12,
C
cuicheng01 已提交
873
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
874 875 876 877 878
    _load_pretrained(
        pretrained,
        model,
        MODEL_URLS["SwinTransformer_large_patch4_window12_384"],
        use_ssld=use_ssld)
T
Tingquan Gao 已提交
879
    return model