cosmargin.py 1.9 KB
Newer Older
B
Bin Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import math
import paddle.nn as nn

W
weishengyu 已提交
19

B
Bin Lu 已提交
20
class CosMargin(paddle.nn.Layer):
W
weishengyu 已提交
21
    def __init__(self, embedding_size, class_num, margin=0.35, scale=64.0):
B
Bin Lu 已提交
22 23 24 25 26
        super(CosMargin, self).__init__()
        self.scale = scale
        self.margin = margin
        self.embedding_size = embedding_size
        self.class_num = class_num
W
weishengyu 已提交
27 28 29 30 31 32 33 34 35

        weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.XavierNormal())
        self.fc = nn.Linear(
            self.embedding_size,
            self.class_num,
            weight_attr=weight_attr,
            bias_attr=False)

B
Bin Lu 已提交
36 37 38
    def forward(self, input, label):
        label.stop_gradient = True

W
weishengyu 已提交
39 40
        input_norm = paddle.sqrt(
            paddle.sum(paddle.square(input), axis=1, keepdim=True))
C
cuicheng01 已提交
41
        input = paddle.divide(input, input_norm)
B
Bin Lu 已提交
42 43

        weight = self.fc.weight
W
weishengyu 已提交
44 45
        weight_norm = paddle.sqrt(
            paddle.sum(paddle.square(weight), axis=0, keepdim=True))
B
Bin Lu 已提交
46 47
        weight = paddle.divide(weight, weight_norm)

W
weishengyu 已提交
48
        cos = paddle.matmul(input, weight)
B
Bin Lu 已提交
49
        cos_m = cos - self.margin
W
weishengyu 已提交
50

B
Bin Lu 已提交
51
        one_hot = paddle.nn.functional.one_hot(label, self.class_num)
B
Bin Lu 已提交
52
        one_hot = paddle.squeeze(one_hot, axis=[1])
W
weishengyu 已提交
53 54
        output = paddle.multiply(one_hot, cos_m) + paddle.multiply(
            (1.0 - one_hot), cos)
B
Bin Lu 已提交
55 56
        output = output * self.scale
        return output